Skip to main content

Fake News Detection Using Time Series and User Features Classification

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2020)

Abstract

In a scenario where more and more individuals use online social network platforms as an instrument to propagate news without any control, it is necessary to design and implement new methods and techniques that guarantee the veracity of the disseminated news. In this paper, we propose a method to classify true and false news, commonly known as fake news, which exploits time series-based features extracted from the evolution of news, and features from the users involved in the news spreading. Applying our methodology over a real Twitter dataset of precategorized true and false news, we have obtained an accuracy of 84.61% in 10-fold cross-validation, and proved experimentally that all the selected features are relevant for this classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The names of fields has been extracted from the Twitter developers documentation.

References

  1. Bruns, A.: The active audience: transforming journalism from gatekeeping to gatewatching (2008)

    Google Scholar 

  2. Chunara, R., Andrews, J.R., Brownstein, J.S.: Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am. J. Trop. Med. Hyg. 86(1), 39–45 (2012)

    Article  Google Scholar 

  3. Lee, K., Agrawal, A., Choudhary, A.: Real-time disease surveillance using twitter data: demonstration on flu and cancer. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1474–1477. ACM (2013)

    Google Scholar 

  4. Christakis, N.A., Fowler, J.H.: Social network sensors for early detection of contagious outbreaks. PLoS ONE 5(9), e12948 (2010)

    Article  Google Scholar 

  5. Schmidt, C.W.: Trending now: using social media to predict and track disease outbreaks. Environ. Health Perspect. 120(1), a30 (2012)

    Google Scholar 

  6. Bello-Orgaz, G., Hernandez-Castro, J., Camacho, D.: Detecting discussion communities on vaccination in twitter. Future Gen. Comput. Syst. 66, 125–136 (2017)

    Article  Google Scholar 

  7. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)

    Google Scholar 

  8. Guy, M., Earle, P., Ostrum, C., Gruchalla, K., Horvath, S.: Integration and dissemination of citizen reported and seismically derived earthquake information via social network technologies. In: Advances in Intelligent Data Analysis IX, pp. 42–53 (2010)

    Google Scholar 

  9. Spence, P.R., Lachlan, K.A., Griffin, D.R.: Crisis communication, race, and natural disasters. J. Black Stud. 37(4), 539–554 (2007)

    Article  Google Scholar 

  10. Barberá, P., Jost, J.T., Nagler, J., Tucker, J.A., Bonneau, R.: Tweeting from left to right: is online political communication more than an echo chamber? Psychol. Sci. 26(10), 1531–1542 (2015)

    Article  Google Scholar 

  11. Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: Eleventh International AAAI Conference on Web and Social Media (2017)

    Google Scholar 

  12. Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)

    Article  Google Scholar 

  13. Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)

    Article  Google Scholar 

  14. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.-F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1751–1754. ACM (2015)

    Google Scholar 

  15. Feng, V.W., Hirst, G.: Detecting deceptive opinions with profile compatibility. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing, pp. 338–346 (2013)

    Google Scholar 

  16. Rubin, V.L., Lukoianova, T.: Truth and deception at the rhetorical structure level. J. Assoc. Inf. Sci. Technol. 66(5), 905–917 (2015)

    Article  Google Scholar 

  17. Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The development and psychometric properties of LIWC2015. Technical report (2015)

    Google Scholar 

  18. Shu, K., Wang, S., Liu, H.: Beyond news contents: the role of social context for fake news detection. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 312–320. ACM (2019)

    Google Scholar 

  19. Ferreira, W., Vlachos, A.: Emergent: a novel data-set for stance classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1163–1168 (2016)

    Google Scholar 

  20. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation structures. In: 2015 IEEE 31st International Conference on Data Engineering, pp. 651–662. IEEE (2015)

    Google Scholar 

  21. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking Sandy: characterizing and identifying fake images on twitter during Hurricane Sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736. ACM (2013)

    Google Scholar 

  22. Mohammad, S.M., Sobhani, P., Kiritchenko, S.: Stance and sentiment in tweets. ACM Trans. Internet Technol. (TOIT) 17(3), 26 (2017)

    Article  Google Scholar 

  23. Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1589–1599. Association for Computational Linguistics (2011)

    Google Scholar 

  24. Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on twitter. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 153–164. SIAM (2012)

    Google Scholar 

  25. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM (2011)

    Google Scholar 

  26. Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G., Previti, M.: Terrorism and war: twitter cascade analysis. In: Del Ser, J., Osaba, E., Bilbao, M.N., Sanchez-Medina, J.J., Vecchio, M., Yang, X.-S. (eds.) IDC 2018. SCI, vol. 798, pp. 309–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99626-4_27

    Chapter  Google Scholar 

  27. De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)

    Article  Google Scholar 

  28. Introduction to the tsfeatures package. https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html. Accessed 11 Nov 2019

  29. Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 1616–1619. IEEE (2015)

    Google Scholar 

  30. Fulcher, B.D., Jones, N.S.: Highly comparative feature-based time-series classification. IEEE Trans. Knowl. Data Eng. 26(12), 3026–3037 (2014)

    Article  Google Scholar 

  31. Nembrini, S., König, I.R., Wright, M.N.: The revival of the Gini importance? Bioinformatics 34(21), 3711–3718 (2018)

    Article  Google Scholar 

  32. Friedman, J.H.: A variable span scatterplot smoother (1984). http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-3477.pdf

  33. Bischl, B., et al.: mlr: machine learning in R. J. Mach. Learn. Res. 17(170), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning (2016). arXiv preprint arXiv:1606.05386

  35. Puri, N., Gupta, P., Agarwal, P., Verma, S., Krishnamurthy, B.: Magix: model agnostic globally interpretable explanations (2017). arXiv preprint arXiv:1706.07160

  36. Friedman, J.H., Popescu, B.E., et al.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2(3), 916–954 (2008)

    Article  MathSciNet  Google Scholar 

  37. Apley, D.W.: Visualizing the effects of predictor variables in black box supervised learning models (2016). arXiv preprint arXiv:1612.08468

  38. Accumulated local effects plot. https://christophm.github.io/interpretable-ml-book/ale.html. Accessed 11 Nov 2019

Download references

Acknowledgements

This work has been supported by several research grants: Spanish Ministry of Science and Education under TIN2014-56494-C4-4-P grant (DeepBio), European Union, under ISFP-POLICE ACTION: 823701-ISFP-2017-AG-RAD grant (YoungRes), and Comunidad Autónoma de Madrid under P2018/TCS-4566 grant (CYNAMON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Rodriguez-Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Previti, M., Rodriguez-Fernandez, V., Camacho, D., Carchiolo, V., Malgeri, M. (2020). Fake News Detection Using Time Series and User Features Classification. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds) Applications of Evolutionary Computation. EvoApplications 2020. Lecture Notes in Computer Science(), vol 12104. Springer, Cham. https://doi.org/10.1007/978-3-030-43722-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43722-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43721-3

  • Online ISBN: 978-3-030-43722-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics