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Abstract. The deployment of Machine Learning (ML) models is a dif-
ficult and time-consuming job that comprises a series of sequential and
correlated tasks that go from the data pre-processing, and the design
and extraction of features, to the choice of the ML algorithm and its
parameterisation. The task is even more challenging considering that
the design of features is in many cases problem specific, and thus re-
quires domain-expertise. To overcome these limitations Automated Ma-
chine Learning (AutoML) methods seek to automate, with few or no
human-intervention, the design of pipelines, i.e., automate the selection
of the sequence of methods that have to be applied to the raw data.
These methods have the potential to enable non-expert users to use
ML, and provide expert users with solutions that they would unlikely
consider. In particular, this paper describes AutoML-DSGE – a novel
grammar-based framework that adapts Dynamic Structured Grammat-
ical Evolution (DSGE) to the evolution of Scikit-Learn classification
pipelines. The experimental results include comparing AutoML-DSGE
to another grammar-based AutoML framework, Resilient Classification
Pipeline Evolution (RECIPE), and show that the average performance
of the classification pipelines generated by AutoML-DSGE is always su-
perior to the average performance of RECIPE; the differences are statis-
tically significant in 3 out of the 10 used datasets.

Keywords: Automated Machine Learning, Scikit-Learn, Dynamic Struc-
tured Grammatical Evolution

1 Introduction

Nowadays, with the ever-growing amount of collected information the challenge
is not concerned with the lack of information, but rather on how to design
efficient Machine Learning (ML) models that can extract useful knowledge, or aid
in the automation of daily-life tasks. Typically, to deploy a ML system we need to
follow a pre-defined number of steps: (i) pre-process the data; (ii) design, extract,
and select features, i.e., data characteristics; (iii) select the most appropriate
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Fig. 1: From data to ML model deployment.

ML model; and (iv) parameterise the ML model. The flow of the iterative steps
that one must traverse from the data to the model is depicted in Figure 1: the
multiple steps are all interconnected, which means that for example in case we
have already a model, but we acknowledge that the set of features is not the most
adequate one we may be thrown back to the beginning of the process again. In
addition, even when the practitioner is a ML expert, and is well aware of which
models are more adequate for particular tasks, it still needs to design features,
which are domain-dependent, and therefore often require domain-expertise, and
sometimes multidisciplinary teams.

To overcome the difficulty caused by the correlation between the multiple
choices that have to be made prior to deploying a ML system we can resort
to Automated Machine Learning (AutoML). In brief words AutoML concerns
searching for the most effective ML models for a particular task. One of the key-
advantages of AutoML is that it does not require human input, and consequently
the gain is twofold: (i) on the one hand it empowers non-expert users with the
ability to apply ML models to their problems; (ii) on the other hand, it opens
the door to novel solutions, that a human-expert would potentially neglect.

The current work focuses on AutoML applied to classification datasets. The
common approach of AutoML to this sort of problems is to evolve a classification
pipeline, i.e., an ordered sequence of tasks that are performed to accurately
distinguish between the different classes of the problem. The pipeline tasks can be
any known form of data pre-processing; feature design, extraction, or selection; or
ML algorithm. In particular, we evolve Scikit-Learn [1] pipelines with Dynamic
Structured Grammatical Evolution (DSGE) [2]. Our main contributions are:

– The proposal of a new grammar-based AutoML framework based on DSGE:
AutoML-DSGE;

– The release of the framework as open-source, available on GitHub: https:
//github.com/fillassuncao/automl-dsge;

– The performance of a wide set of experiments on multiple classification tasks;

– The comparison of AutoML-DSGE to previous AutoML methods. The re-
sults show that the results of AutoML-DSGE are always superior to those

https://github.com/fillassuncao/automl-dsge
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reported by other grammar-based AutoML methods, and are statistically
superior in 3 out of the 10 used datasets.

The remainder of the paper is structured as follows. Section 2 surveys multi-
ple AutoML methods; Section 3 describes DSGE; Section 4 details the evolution
of Scikit-Learn classification pipelines with DSGE; Section 5 analyses the exper-
imental results; and Section 6 draws conclusions and addresses future work.

2 Related Work

The most common and widely used form of AutoML is grid search: the best
parameterisation of a ML model is discovered by an exhaustive search of all
the combinations of a grid of parameters. However, grid search suffers from the
curse of dimensionality, i.e., the explosion in the number of parameters drasti-
cally increases the amount of setups that need to be tested. To deal with the
previous we can instead use grid search methods that seek to narrow the num-
ber of setups, for example by adapting the resolution of the grid in run-time [3].
Nonetheless, grid search has the advantage that it is highly parallelisable. To
overcome the issue of having to explore the entire grid of hyper-parameters
we may instead apply random search. While grid search performs an exhaustive
enumeration of the domain, random search selects the combinations of the hyper-
parameters in a stochastic manner. Random search is as parallelisable as grid
search;.Nonetheless, it is non-adaptive [4], and with very high dimensional search
spaces it also struggles to find near-optimal solutions. According to Bergstra et
al., given the same computational time, random search is able to discover better
parameterisations for Artificial Neural Networks (ANNs) than grid search [5,6].

An alternative to grid and random search are Bayesian methods [7], which
model probabilistically the behaviour of the system, in order to drive search
towards regions of the domain that are prone to generate good parameterisations.
Snoek et al. applied Bayesian optimisation to tune the parameters of the Branin-
Hoo function, Logistic Regression, Online Linear Discriminant Analysis, Latent
Structured Support Vector Machines, and Convolutional Neural Networks [8].
Bergstra et al. have demonstrated that statistical methods can perform better at
hyper-parameter optimisation [9] than manual tuning or random search. Other
class of heuristic approach is Evolutionary Computation (EC), which has also
been widely used to optimise ML algorithms (e.g., [10,11]).

The majority of the methods mentioned until now focus on the optimisation
of a specific ML model. Nonetheless, the ultimate goal of AutoML is to fully au-
tomate the entire process: from the data pre-processing, and feature design and
selection up to the model choice and parameterisation. Recently, there have been
competitions seeking to promote such systems; an example is ChaLearn [12]. The
challenge is organised into 6 increasingly difficult levels (preparation, novice, in-
termediate, advanced, expert, and master), where the ultimate goal is to “create
the perfect black box eliminating the human in the loop” [13].

Weka [14] and Scikit-learn [1] are examples of two ML libraries that en-
able users to explore their data and easily deploy learning models. They make



available stable implementations of the vast majority of ML methods, but de-
spite providing default parameterisation they are not suit for effectively solv-
ing all problems. Auto-WEKA [15,16], Tree-based Pipeline Optimization Tool
(TPOT) [17], Hyperopt-Sklearn [18], Auto-Sklearn [19], and Resilient Classifi-
cation Pipeline Evolution (RECIPE) [20], are examples of methods that aim
at evolving the pipelines for the Weka and Scikit-learn libraries, from the pre-
processing of the raw data to the parameterisation of the model to be used (in
essence they automate the flow-chart depicted in Figure 1). Except for TPOT
and RECIPE, all the previous methodologies are based on Bayesian optimisa-
tion; TPOT and RECIPE use Genetic Programming (GP). The goal is to search
for Weka or Scikit-Learn pipelines, i.e., sequences of the libraries’ primitives
that perform feature selection and classification. The frameworks are not only
responsible for selecting the primitives but also promote their parameterisation.
Auto-Weka, Hyperopt-Sklearn, Auto-Sklearn and RECIPE generate pipelines
of fixed size; TPOT allows the generation of pipelines of unrestricted size, i.e.,
it does not have a fixed number of pre-processors, and multiple copies of the
dataset can be used in simultaneous, so that multiple methods are applied to it,
and then the features combined. Whilst the majority of these approaches target
the maximisation of the classification performance, in addition TPOT also seeks
for compact pipelines.

The focus of the current work is on AutoML approaches based on EC. In
particular, we are interested in grammar-based methods, such as RECIPE. The
main advantage of grammar-based methods over others is that they facilitate
the definition of the search space, and thus in case we have a-priori knowledge
about the problem we can bias the grammar. On the other hand, the grammar
enables the framework to be easily extended: to add more methods to the search
space we just require the definition of new production rules. To the best of our
knowledge, RECIPE is the only grammar-based AutoML framework that aims
at optimising classification pipelines. The current paper introduces AutoML-
DSGE and compares it to RECIPE. AutoML-DSGE is based on DSGE, which
is detailed next.

3 Dynamic Structured Grammatical Evolution

To properly introduce DSGE [2] we must start by detailing Structured Gram-
matical Evolution (SGE) [21], which is a variant of Grammatical Evolution
(GE) [22]. The three methods are grammar-based GP approaches, and thus
the search space is defined by means of a Context-Free Grammar (CFG). CFGs
are rewriting systems, and thus the grammar, G, can be formally defined by a
4-tuple G = (N,T, P, S), where: (i) N is the set of non-terminal symbols; (ii) T
is the set of terminal symbols; (iii) P is the set of production rules of the form
x ::= y, x ∈ N and y ∈ {N ∪ T}∗; and (iv) S is the start symbol (or axiom).
An example of a CFG is shown in Figure 2. The main difference between the
methods lies on the encoding of the individuals, and thereby on the genotype
decoding procedure.



The individuals in GE are encoded as linear ordered sequences of integers;
each integer represents a derivation step and is called a codon. The genotype
to phenotype mapping works by reading the codons sequentially, from left to
right. Starting from the axiom the mapping procedure iteratively decides which
production rule should be applied to expand the leftmost non-terminal symbol.
To select the production rule the modulo mathematical operation (%) is used to
find the remainder after the division of the codon by the number of possibilities
for expanding the leftmost non-terminal symbol. The remainder defines the ex-
pansion possibility that should be applied to the leftmost non-terminal symbol.
No codon is read when there is only a possibility for expanding a non-terminal
symbol. On the other hand, grammars can be recursive, and thus the number of
codons may be insufficient; in such cases the sequence of codons is re-used from
the start (wrapping). To avoid entering an infinite wrapping loop, or generating
solutions that are too complex to be evaluated, a maximum number of wrap-
pings is set, and when this bound is reached the mapping procedure is halted,
and the individual is assigned the worst possible fitness value.

The drawbacks commonly pointed to GE are low locality and high redun-
dancy [23,24]. The locality measures how the changes in the genotype impact
the phenotype. In GE there is not a one-to-one mapping between the codons
and the non-terminal symbols, and therefore it is easy for a change in one of the
codons to affect all the derivation steps from that point on-wards (low locality).
On the other hand, the redundancy is concerned to the fact that in GE it is
possible that different genotypes generate the same phenotype because of the
modulo operation used on the decoding procedure.

SGE solves the limitations of GE by introducing a new genotypic representa-
tion that defines a one-to-one mapping between the codons and the non-terminal
symbols, i.e., instead of a single ordered sequence of codons the genotype is
composed by multiple independent ordered sequences of codons, one for each
non-terminal symbol. The size of each sequence of codons is of the maximum
number of possible expansions for the non-terminal symbol it encodes, and thus
there is no wrapping. The use of the modulo operation is not required as we
know exactly which non-terminal symbol the codon encodes.

In SGE the genotypes encode more codons than the ones used in the de-
coding procedure, and consequently the genetic operators may easily act upon
non-coding genes. This under some circumstances can slow down evolution. To
prevent this effect, the genotype of DSGE is similar to those of SGE with one
main difference: it only encodes the codons strictly required for decoding the in-
dividual. In case mutations affect the amount of necessary codons, the genotype
is expanded. In this paper we use DSGE; the code for DSGE can be found in
the GitHub repository https://github.com/nunolourenco/sge3.

4 AutoML-DSGE

The goal of this paper is to introduce a new framework, to which we call AutoML-
DSGE, that adapts DSGE to the evolution of classification pipelines. In par-

https://github.com/nunolourenco/sge3


Pre-processing Feature manipulation Classification

Imputer VarianceThreshold ExtraTreeClassifier
Normalizer SelectPercentile DecisionTreeClassifier

MinMaxScaler SelectFpr GaussianNB
MaxAbsScaler SelectFwe BernouliNB
RobustScaler SelectFdr MultinominalNB

StandardScaler RFE SVC
REFCV NuSVC

SelectFromModel KNeighborsClassifier
IncrementalPCA RadiusNeighborsClassifier

PCA NearestCentroid.
FastICA LDA

GaussianRandomProjection QDA
SparseRandomProjection LogisticRegression

RBFSampler LogisticRegressionCV
Nystroem PassiveAggressiveClassifier

FeatureAgglomeration Perceptron
PolynomialFeatures Ridge

RidgeCV
AdaBoostClassifier

GradientBoostingClassifier
RandomForestClassifier

ExtraTreesClassifier

Table 1: Scikit-Learn classes that are allowed to be part of the pipelines.

ticular, we optimise Scikit-Learn [1] pipelines. Next, we define pipelines (Sec-
tion 4.1), the used grammar (Section 4.2), and detail the evolution of pipelines
using DSGE (Section 4.3). The code for AutoML-DSGE is released as open-
source software, and can be found in the GitHub repository https://github.

com/fillassuncao/automl-dsge.

4.1 Pipelines

In the field of ML a classification pipeline is defined as an ordered set of op-
erations that are performed to the data instances in order to accurately sepa-
rate them in the multiple classes of the dataset. The operations in the pipeline
can be grouped into 3 disjoint sets: (i) data pre-processing; (ii) feature design
and selection; and (iii) classification. Table 1 enumerates the methods that are
considered to form the pipelines in the current work. Recall that we focus on
classification pipelines, and thus only classification algorithms are taken into
account. Nonetheless, the extension of the approach to regression algorithms is
straight-forward. We will optimise Scikit-Learn pipelines, and thus the methods
in the table are Scikit-Learn implementations. Further details can be found in
https://scikit-learn.org/stable/user_guide.html.

https://github.com/fillassuncao/automl-dsge
https://github.com/fillassuncao/automl-dsge
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<pipeline> ::=<preprocessing><algorithm> (1)

|<algorithm> (2)

<preprocessing> ::=<imputation> |<bounding> |<dimensionality> | (3)

|<binarizer> |<imputation><bounding> (4)

|<imputation><binarizer> (5)

| . . . (6)

<imputation> ::= preprocessing:imputer<strategy imp> (7)

<strategy imp> ::= strategy:mean | strategy:median | strategy:most frequent (8)

. . . (9)

. . . (10)

<algorithm> ::=<strong> |<weak> |<tree ensemble> (11)

. . . (12)

. . . (13)

<weak> ::=<nearest> |<discriminant> | . . . (14)

. . . (15)

. . . (16)

<nearest> ::= classifier:radius neighbors<radius><weights> (17)

<k algorithm><leaf size><p><d metric> (18)

<radius> ::= radius:RANDFLOAT(1.0,30.0) (19)

<weights> ::= weights:uniform |weights:distance (20)

<k algorithm> ::= algorithm:auto | algorithm:brute| . . . (21)

<leaf size> ::= leaf size:RANDINT(5,100) (22)

. . . (23)

. . . (24)

Fig. 2: CFG used by AutoML-DSGE for optimising Scikit-Learn pipelines.

4.2 Grammar

The grammar used by AutoML-DSGE describes the search space of the Scikit-
Learn classification pipelines. The grammar is shown in Figure 2. The production
rules are only partially shown because of space constraints: the grammar is
comprised of 89 production rules that encode the different pipeline methods
and their parameterisation. The complete grammars can be found in https://

github.com/fillassuncao/automl-dsge/tree/master/sge/grammars. There
is a separate grammar for each dataset because of specific dataset parameters,
e.g., number of features. The used grammars are adapted from the grammars
used by RECIPE, which is the method we compare AutoML-DSGE to.

The axiom of the grammar is the pipeline non-terminal symbol, and con-
sequently the pipeline can be found by either pre-processing and classification

https://github.com/fillassuncao/automl-dsge/tree/master/sge/grammars
https://github.com/fillassuncao/automl-dsge/tree/master/sge/grammars


methods (line 1) or just by the classification method (line 2). The current version
of AutoML-DSGE does not consider ensembles. The extension of AutoML-DSGE
to enable the optimisation of ensembles could be easily introduced by adding a
recursive production rule to build pipelines with more than one classifier algo-
rithm, each a voter of the ensemble. The pre-processing methods manipulate
the dataset and features (lines 3-6), and the classification methods cover a wide
range of ML approaches, amongst which, are clustering methods, Support Vec-
tor Machines (SVMs), trees, or ANNs (lines 11-18). In more detail, the pipeline
methods are encoded as follows: the pre-processing and classification methods
are encoded respectively by the preprocessing and classifier tags, that are placed
before the method name (e.g., classifier:radius neighbors in line 17). The method
name must match the name of the function that is used in the mapping from the
phenotype to the Scikit-Learn interpretable code (see Section 4.3). The same ra-
tionale is applied to the method parameters, where the parameter name precedes
the parameter value. The parameters can be of three types: (i) closed choice, e.g.,
the weights parameter, in line 20, that can assume the values uniform or dis-
tance; (ii) random integer, e.g., the leaf size parameter in line 22; or (iii) random
float, e.g., the radius parameter in line 19.

The search space of AutoML-DSGE, i.e., the number of possible combinations
of the grammar is greater than 9.39 × 1017. The continuous parameters can
generate an infinite number of possibilities, and thus are not considered in the
search space size. In addition, the parameters related to the number of features
are also not taken into account because they are problem dependent.

4.3 Evolution of Pipelines

The pipelines are evolved using DSGE, and therefore, a population of individuals
is continuously evolved throughout a given number of generations, until a stop
criteria is met. Each individual encodes a different pipeline. The core of the rep-
resentation of the individuals in AutoML-DSGE is similar to the representation
scheme used in DSGE, with one main difference related to the need to directly
keep real values in the genotype. Otherwise, they would have to be encoded by
production rules, such as:

<randfloat> ::=<signal><rec-number> .<rec-number>

<signal> ::= − |+
<rec-number> ::=<number> |<number><number-recursive>

<number> ::= 0 | 1 | 2 | 3 | 4
5 | 6 | 7 | 8 | 9

The encoding of real values by means of production rules has two main disad-
vantages. On the one hand it enlarges the search space. On the other hand there
is no easy way to control the limits (minimum and maximum) of the generated
real values. In case the search space encompasses two or more real values with
different ranges there would be the need for different production rules, one for



Dataset #Inst. #Feat. Feat. types #Classes Missing

Breast Cancer 699 9 Integer 2 Yes
Car Evaluation 1728 5 Categorical 4 No

Caenorhabditis Elegans 478 765 Binary 2 No
Chen-2002 179 85 Real 2 No

Chowdary-2006 104 182 Real 2 No
Credit-G 1000 20 Real / Categorical 2 No

Drosophila Melanogaster 119 182 Real 2 No
DNA-No-PPI-T11 135 104 Real / Categorical 2 Yes

Glass 214 9 Real 7 No
Wine Quality-Red 1599 11 Real 10 No

Table 2: Description of the used datasets.

each real value range. Because of the aforementioned we encode the integers
and floats directly, as real values. When expanding the grammar, when we reach
a terminal symbol that is either RANDINT or RANDFLOAT we store a tu-
ple in the genotype. The tuple has the format (rand-type, rand-min, rand-max,
rand-value), where rand-type can assume integer of float, the rand-min and rand-
max are the minimum and maximum limits of the range, and the rand-value is
the randomly generated value of the type rand-type, and within the [rand-min,
rand-max] range. The tuple is necessary for performing the mutation, i.e., when a
mutation is applied to an individual and it is required to generate a new random
value for a specific parameter we must know its type and allowed range.

DSGE is a grammar-based approach, and thus the genotype is completely
separate from the phenotype. The phenotype does not directly represent a train-
able pipeline. Consequently, for assessing the fitness of the individuals we have
to perform two sequential steps: (i) map the genotype to the phenotype; (ii)
map the phenotype to Scikit-Learn interpretable model. To map the genotype
to the phenotype the decoding procedure of DSGE is adapted: the only differ-
ence lies in the decoding of the real-values, where the value in the last position
of the tuple is read. The phenotype of AutoML-DSGE is readable, despite not
being Scikit-Learn executable code. The readability of the phenotype is facil-
itated by the fact that each parameter has the parameter name associated to
the value; an example of a phenotype is “classifier:random forest criterion:gini
max depth:None n estimators:50 min weight fraction leaf:0.01 . . . ”.

To map the phenotype to a Scikit-Learn interpretable pipeline we have to
traverse the phenotype linearly from left to right and for each pre-processing
or classifier method create the corresponding Scikit-Learn object. Therefore,
for each method in the grammar we have to build a function that creates the
Scikit-Learn object: the function receives all the parameters that are encoded
in the grammar and outputs the Scikit-Learn object. Whenever the grammar is
extended to include more methods we have to create the corresponding functions.

To evaluate the evolved pipelines we use cross-validation (with 3 folds). In
the current paper the fitness is the average of the performances on the cross-



Parameter Value

Number of runs 30
Number of generations 100

Population size 100
Mutation rate 10%
Crossover rate 90%

Elitism 5 individuals
Tournament size 2

Max. pipeline train time 5 minutes
Max. #generations without improvement 5

Table 3: Experimental parameters.

validation. The metric used to evaluate the performance is the F-measure. We
decide for this metric because some of the datasets where we will be conducting
the experiments are highly unbalanced.

The goal of AutoML is to generate (automatically) effective Scikit-Learn
classification pipelines that non-expert ML users can deploy in their problems
and domains. With this in mind, similarly to other approaches, we limit the train
time of each pipeline to a maximum CPU time, that in this paper is set to five
minutes. For the same reason evolution is halted when there is no improvement
for five generations.

5 Experimentation

To investigate the ability of AutoML-DSGE to generate effective classification
Scikit-Learn pipelines we apply it to the classification of 10 datasets, which
are described in Section 5.1. The experimental setup is detailed in Section 5.2,
and the analysis of the evolutionary results, and comparison to the pipelines
generated by RECIPE is carried out in Section 5.3.

5.1 Datasets

To enable a fair comparison between AutoML-DSGE and RECIPE we conduct
the experiments on the same datasets used by RECIPE: 10 datasets – 5 from
the University of California Irvine (UCI) ML repository [25], and 5 from bio-
informatics [26,27,28]. A summary of the dataset characteristics is shown in
Table 2. The table provides information on the number of instances (#Inst.),
number of features (#Feat.), type of features (Feat. types), number of classes
(#Classes), and if there are or not missing values in the dataset (Missing).

5.2 Experimental Setup

The parameters required for performing the experiments contained in this article
are described in Table 3. The parameters are the same for AutoML-DSGE and



Dataset AutoML-DSGE RECIPE p-value

Breast Cancer 0.9568 ± 0.0296 0.9311 ± 0.0798 0.0264 (++)
Car Evaluation 0.9964 ± 0.0068 0.9962 ± 0.0079 0.9761

Caenorhabditis Elegans 0.6140 ± 0.0644 0.6049 ± 0.0681 0.7948
Chen-2002 0.9451 ± 0.0413 0.9292 ± 0.0618 0.3371

Chowdary-2006 0.9970 ± 0.0163 0.9812 ± 0.0514 0.0679
Credit-G 0.7400 ± 0.0370 0.7075 ± 0.0359 0.0008 (+++)

Drosophila Melanogaster 0.6679 ± 0.1001 0.6353 ± 0.1518 0.2585
DNA-No-PPI-T11 0.7114 ± 0.1194 0.7021 ± 0.0761 0.9681

Glass 0.7628 ± 0.1095 0.7325 ± 0.1021 0.0524
Wine Quality-Red 0.6600 ± 0.0387 0.6430 ± 0.0422 0.0257 (++)

Table 4: AutoML-DSGE, and RECIPE comparative performance. The results
are averages of 30 independent runs.

RECIPE. The maximum CPU train time is measure in minutes, and thus it is
important to mention that the experiments are performed in a dedicated server
with an Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz, and 32 GB of RAM.

The code used for AutoML-DSGE, and RECIPE can be found, respectively,
in the GitHub repositories github.com/laic-ufmg/Recipe/, and github.com/

fillassuncao/automl-dsge. The code of RECIPE was modified to include the
evolution stop criteria based on a maximum number of generations without im-
provement, which despite described in the framework paper [20], is not included
in the current code version.

To enable the comparison of results we apply the same dataset partitioning
scheme used in RECIPE: all datasets are split using a 10-fold cross-validation
strategy; and thus as we perform 30 evolutionary runs each fold is kept as the
test set three times, and the remaining used for training the pipelines. During
each run, the test set is kept aside from evolution, and the train set is used to
train the pipelines with cross-validation (3 folds). By the end of evolution, the
best pipeline is trained using all the train data and applied to the test set. The
evolution is conduced using the grammar of Figure 2.

To establish the pair-wise comparison of the results, and check whether or not
the differences between AutoML-DSGE and RECIPE are statistically significant
we use the Wilcoxon Signed-Rank test, with a significance level of 5%. Further,
for the statistically significant differences we compute the effect size.

5.3 Experimental Results

To compare the pipelines generated by AutoML-DSGE and RECIPE we conduct
evolution for the same datasets, and using equivalent grammatical formulations,
i.e., the search space is the same for both frameworks. The test performance
(f-measure), for each dataset is presented in Table 4. The results are averages of
30 independent runs. A f-measure marked in bold indicates the approach that
reports the highest average performance. In addition, the table also reports the

github.com/laic-ufmg/Recipe/
github.com/fillassuncao/automl-dsge
github.com/fillassuncao/automl-dsge
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Fig. 3: Stacked area charts of the AutoML-DSGE evolution of the pre-processing
(left) and classification (right) methods on the Car dataset. The results reflect
the percentage of the best pipelines that use each of the methods.

p-values for the pair-wise comparisons between the two approaches, and bold
p-values indicate statistically significant differences. The effect-size is denoted in
brackets after the p-value, with +, ++, and +++ denoting small (0.1 ≤ r <
0.3), medium (0.3 ≤ r < 0.5), and large (r ≥ 0.5) effect sizes, respectively.

The analysis of the results indicates that AutoML-DSGE reports results that
are always superior to those obtained by RECIPE. In addition to the higher av-
erage, the standard deviation is lower in the AutoML-DSGE results in 7 out of 10
datasets, i.e., for the considered datasets AutoML-DSGE generates more consis-
tently higher results. These differences are statistically significant in 3 datasets
(Breast Cancer, Credit-G, and Wine Quality-Red). The effect size is medium
twice, and high once. AutoML-DSGE is never worse than RECIPE.

The results of Table 4 report the average performance of the 30 evolutionary
runs, for each dataset. Nonetheless, as we are optimising ML methods we investi-
gate the generalisation ability of the generated pipelines. To this end, we compute
the average difference between the evolutionary, and test performances for the
10 datasets. Except for the Chowdary-2006 and Car datasets, the average differ-
ence between the evolutionary and test performance is lower in AutoML-DSGE
than in RECIPE. Considering all datasets, the average difference between the
evolutionary and test set performance is of approximately 0.0328 in AutoML-
DSGE and of 0.0589 in RECIPE. This proves that the tendency to overfit is
lower in AutoML-DSGE, as it reports more often than RECIPE evolutionary
performances that are closer to the test ones.

To analyse the structure of the pipelines evolved by AutoML-DSGE we in-
spect the methods that compose them. Due to space constraints we focus on
the Car dataset, as it is the dataset where, on average, more generations are
performed. Figure 3 shows the evolution of the pre-processing and classification
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Fig. 4: Best pipeline generated for classifying the Car dataset. Each box repre-
sents a pipeline method and its parameterisation.

methods of the best individuals as generations proceed. The results show the
evolution of the percentage of the runs that use each of the pre-processing and
classification methods. Recall that the different evolutionary runs can differ in
the number of performed generations, and therefore to avoid a misleading repre-
sentation of the evolution of the methods that compose the pipelines we consider
that all runs have the same number of generations. That is, we consider that
all runs evolve for the same number of generations as the longer run (in this
case 35 generations). For the evolutionary runs that perform less generations we
keep the last generation (which is the best found solution) for the remainder of
the generations. The results show that, for the Car dataset, the pre-processing
methods distribution does not change as evolution proceeds. On the other hand,
a different behaviour is noticeable on the classifier methods, that converge to the
SVC, and LogisticRegression (or LogisticRegressionCV) method. The evolution
also shows that evolution is focused on the methods that are more effective for
that specific dataset. Otherwise, the used methods would be more diverse, and
the percentage of the Others would be higher. In particular, we plot in Figure 4
the best pipeline found for classifying the Car dataset. We also inspect the evolu-
tionary patterns in the remaining datasets and acknowledge similar conclusions.
It is however important to point out that for the different datasets evolution
focuses on different pre-processing and classification methods.

Ultimately, AutoML-DSGE generates no invalid pipelines. After investigating
the pipelines that were assigned with the worse possible fitness we conclude that



their train is halted because they are unable to train in the the maximum granted
CPU time of five minutes, or because they run out of memory.

6 Conclusions and Future Work

Prior to the deployment of a ML model there are a number of choices that have
to be made. There is the need to pre-process the dataset, design, extract and
select features, and decide which ML model is the most adequate. On top of
that, all this sequential choices are correlated, meaning that one affects multiple
others. The choices that have to be made require both domain-specific, and ML
expertise. In an effort to facilitate the widespread use of ML models we introduce
a novel AutoML framework: AutoML-DSGE.

AutoML-DSGE is a grammar-based AutoML approach, and thus the search
space is defined in a human-readable CFG. This key-point of the framework
enables the easy adaptation of AutoML-DSGE to tackle different problems using
a wide set of methods. Further, it eases the introduction of a-priori knowledge
in the search and tuning of the pipelines. The current version of the framework
focuses on the optimisation of Scikit-Learn classification pipelines. The code is
released as open-source software, and can be found in the GitHub repository:
https://github.com/fillassuncao/automl-dsge.

We compare the performance AutoML-DSGE to RECIPE, which to the best
of our knowledge is the only grammar-based AutoML framework. The methods
are compared on 10 datasets from different domains. The results show that the
pipelines generated by AutoML-DSGE surpass in performance the ones obtained
by RECIPE; the average performances of AutoML-DSGE are always superior
to RECIPE, and are statistically superior in 3 datasets (with medium and large
effect sizes). Moreover, AutoML-DSGE is less prone to overfitting than RECIPE.

Future work will be divided into 4 independent research lines: (i) apply
AutoML-DSGE to a wider set of benchmarks; (ii) extend the framework to
regression problems; (iii) introduce ensembling and stacking methods; and (iv)
enable the user to select between the Weka and Scikit-Learn ML libraries, or
even own implemented methods.
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