
SynthLog: A Language for Synthesising Inductive Data
Models (Extended Abstract)

Yann Dauxais?, Clément Gautrais?, Anton Dries?, Arcchit Jain, Samuel Kolb, Mohit
Kumar, Stefano Teso, Elia Van Wolputte, Gust Verbruggen, and Luc De Raedt

KU Leuven, Department of Computer Science, Celestijnenlaan 200A, Leuven, Belgium
First.Last@cs.kuleuven.be

Abstract. We introduce SynthLog, an extension of the probabilistic logic pro-
gramming language ProbLog, for synthesising inductive data models. Inductive
data models integrate data with predictive and descriptive models, in a way that is
reminiscent of inductive databases. SynthLog provides primitives for learning and
manipulating inductive data models, it supports data wrangling, learning predictive
models and constraints, and probabilistic and constraint reasoning. It is used as
the back-end of the automated data scientist approach that is being developed in
the SYNTH project. An overview of the SynthLog philosophy and language as
well as a non trivial example of its use, is given in this paper.

Keywords: Automated data science, Inductive Databases, Probabilistic program-
ming

1 Introduction

Automated data science has received a lot of attention in the last decade [2], and has
been recognized as an important challenge and solutions promise to democratize data
science and make it available to non-expert end-users. Most current approaches tackle
the problem of automatically constructing the best prediction pipeline [6,7]. These
approaches typically target expert end-users, that can understand most of the steps in the
pipeline. In contrast, the SYNTH framework wants to democratize data science and make
it available to the naive end-user. The central setting in SYNTH is that of autocompletion
in spreadsheets [4]. Spreadsheets are used ubiquitously and the autocompletion task
consists of predicting the next cell and value that the user wants to fill out, of course,
under the assumption that there are sufficient regularities in the data to enable meaningful
predictions.

The autocompletion task constitutes the front-end of the SYNTH framework, and
it is easy to see how this can be included in spreadsheet software such as Excel. The
back-end, however, consists of the SynthLog language that should support the underlying
data science processes and components. This includes tools to automate various steps
in data science, from data wrangling to predictive modeling and constraint learning.
But rather than viewing this as a data science workflow or pipeline, SYNTH has the
SynthLog language that allows the knowledgeable user to define and steer the data
? The three authors contributed equally

2 Dauxais, Gautrais, et al.

science process in a declarative manner. It is this language that we briefly introduce and
illustrate in the present note. SynthLog builds on the inductive database idea [8] in that
we are looking for a small and non-trivial set of primitives that supports data science
processes. Rather than building on top of databases [9], however, SynthLog extends
the probabilistic programming language ProbLog that already supports deductive and
probabilistic inference, learning and (a limited form of) constraint processing, which are
all important for data science.

The idea that SynthLog borrows from inductive databases is that it should treat
models (such as predictors or constraints) as first class citizens, that is, SynthLog should
support manipulating, constructing, using, and learning such models. Indeed, SynthLog
should not only allow to handle the inputs and outputs of the data science components,
but also to reason about which models should be learned, used or combined for a
particular dataset or task. The models will be represented as SynthLog theories, which
are essentially ProbLog programs, consisting of a set of probabilistic facts and clauses.
Combining data science components then corresponds to performing operations on
theories: adding/deleting facts, adding/deleting clauses, and combining theories.

In Section 2, we introduce the main contribution of this paper: the SynthLog language.
Then, in Section 3, we present a case-study illustrating how SynthLog can be used to
bridge many components of data science: from data wrangling to constraints.

2 Introduction to SynthLog

SynthLog is a language for supporting automated data science processes. It allows
to construct and manipulate inductive data models. An Inductive Data Model (IDM)
consists of 1) a set of data models (DM) that specifies an adequate data structure for
the dataset (like a database), and 2) a set of inductive models (IMs), that is, a set of
patterns and machine learning models (like classifiers) that have been discovered in
the data. While the DM can be used to retrieve information about the dataset and to
answer questions about specific data points, the IMs can be used to make predictions,
find inconsistencies and redundancies, etc. IDMs integrate data and inductive models in
a SynthLog theory.

SynthLog is built on top of the ProbLog probabilistic programming language. It
essentially assumes that both the data models and the inductive models are ProbLog
programs, and allows to refer to and manipulate such models by means of a new ProbLog
operator. As SynthLog manipulates both data and inductive models, it borrows ideas
from inductive databases that also consider both data and inductive models as first class
citizens. For example, SynthLog follows the mantra of inductive databases that requires
the closure property to be satisfied [8,3]. In the SynthLog context this means that the
result of any operation must be a theory, and thus must be a ProbLog program. At
the same time, as each theory is a ProbLog program, SynthLog supports deductive and
probabilistic reasoning, a form of answer set programming (through DTProbLog [1]) and
machine learning. We first introduce ProbLog on a simple example, and then introduce
the notion of a theory.

SynthLog: A Language for Synthesising Inductive Data Models (Extended Abstract) 3

2.1 ProbLog by example

ProbLog [5] is a probabilistic logic programming language, that extends Prolog by
adding probabilistic primitives and inference. Let us take the example (from [5]) of a
small social network, where smoking behavior depends on friendship among people.

1 0 . 4 : : as thma (X) :− smokes (X) .
2 0 . 3 : : smokes (X) .
3 0 . 2 : : smokes (X) :− f r i e n d (X,Y) , smokes (Y) .
4 f r i e n d (1 , 2) . f r i e n d (2 , 1) . f r i e n d (2 , 4) . f r i e n d (3 , 2) . f r i e n d (4 , 2) .
5 que ry (as thma (2)) .

For example, the first rule states that somebody that smokes has a probability of 40%
to have asthma. Likewise, the second rule states that any person has a 30% chance of
smoking. The query corresponds to the answer we want to get: we want to know the
probability that person 2 has asthma. In this case, the result is 0.15.

As SynthLog extends ProbLog, which extends Prolog, a basic knowledge of Prolog
and ProbLog is assumed in the remainder of this paper. For the interested reader, a more
detailed presentation of ProbLog is available1.

2.2 SynthLog Theories

We now extend ProbLog with the notion of a theory. Each theory will consist of a
ProbLog program and it will be possible to define theories through the scope operator
’:’/2. For example, the fact theory(a):knowledge(1) states that the theory or
ProbLog program identified by theory(a) contains the fact knowledge(1).

The following SynthLog listing defines various theories:

1 c o n s t r a i n t s : (a :−b) .
2 d a t a : b .
3 g l o b a l :X :− c o n s t r a i n t s :X; d a t a :X.
4 que ry (g l o b a l :) .

In this case, the clause a:-b is defined in the theory constraints and is in-
terpreted as constraints:a :- constraints:b. Beyond the syntactic sugar
allowing to factorize the theory name in each terms in a clause, such representation
allows to share constraints between theories and automatically interpret them. In this
example, the global theory is the union of the constraints and data theories.
global contains the fact b and the clause a:-b. Thus, global:a can be inferred.To
support the inductive database aspect of SynthLog, and to allow for further manipulating
inductive models, theories can be loaded from or stored in a database or file.

2.3 A language for data science

To facilitate the use of SynthLog as a language dedicated to data science, several
predicates are introduced to infer properties of relational datasets, build classifiers and
learn or apply constraints on theories. SynthLog supports the definition of custom

1 https://dtai.cs.kuleuven.be/problog/index.html

https://dtai.cs.kuleuven.be/problog/index.html

4 Dauxais, Gautrais, et al.

predicates, that take a theory (i.e. an inductive data model) as input and returns a theory
as output. Many tasks fit within that framework: learners typically take data as input to
output a model, data wrangling takes data as input and outputs data, applying a predictor
requires data and model as input and outputs data. Some of these custom predicates are
detailed in the next section.

3 Case study: Auto-completion

Table 1. Data representing the historical sales of an ice-cream factory.

Type Country June July August Total Profit
Vanilla BE 610 190 670 1470 1
Banana BE 170 690 520 1380 1
Chocolate BE 560 320 140 1020 1
Banana DE 610 640 320 1570 0
Speculaas BE 300 270 290 860 0
Chocolate FR 430 350 300 1080 1

Table 2. Data representing the sales of an ice-cream factory, with missing profit.

Type Country June July August Total Profit
Banana DE 250 650 630 1530
Chocolate NL 210 280 270 760

In this Section, we show how SynthLog can tackle a classic challenge in data science:
automatically filling missing values in a spreadsheet. More precisely, these missing
values are predicted with inductive models. The auto-completion task has been identified
as a simple, yet challenging task, that illustrates the core of the SYNTH framework [4].

This case study shows that SynthLog successfully use both predictors, such as
logistic regression; and probabilistic rules to infer the most likely missing values. We can
therefore build on the large literature of the automation of predictor learning [7], while
also providing an easy way to add user knowledge in the inference process. We also
illustrate how inductive database ideas are used to store and query models depending
on the task at hand. We use a toy dataset emulating sales of an ice-cream factory. The
data is shown in Tables 1 and 2, with missing profit for the two rows in Table 2. It will
be inferred using logistic regression combined with user defined constraints. The code
performing the auto-completion is presented below:

1 m a g i c c e l l s :X :− l o a d c s v (’ m a g i c i c e c r e a m . csv ’ , X) .
2 m i s s i n g d a t a c e l l s :X :− l o a d c s v (’ m a g i c t e s t 1 . c sv ’ , X) .
3
4 m a g i c t a b l e s :X :− d e t e c t t a b l e s (m a g i c c e l l s , X) .
5 m i s s i n g d a t a :X :− d e t e c t t a b l e s (m i s s i n g d a t a c e l l s , X) .
6
7 magic mode l s :X :− s k l e a r n p r e d i c t o r (m a g i c t a b l e s ,
8 ’ l i n e a r m o d e l . L o g i s t i c R e g r e s s i o n ’ ,

SynthLog: A Language for Synthesising Inductive Data Models (Extended Abstract) 5

9 [column (’T1 ’ , 3) , column (’T1 ’ , 4)] , [column (’T1 ’ , 6)] , X) .
10
11 m a g i c p r e d i c t :X :− magic mode l s : p r e d i c t o r (Y) ,
12 magic mode l s : s o u r c e (Y, column (’T1 ’ , 3)) ,
13 magic mode l s : s o u r c e (Y, column (’T1 ’ , 4)) ,
14 p r e d i c t (m i s s i n g d a t a , Y , [column (’T1 ’ , 3) , column (’T1 ’ , 4)] ,X) .
15
16 f i n a l p r e d : t a b l e c e l l (’T1 ’ , X, 7 , V) :−
17 m a g i c p r e d i c t : c e l l p r e d (X, Y, V,) .
18
19 m a g i c c o n s t r a i n t s :
20 (0 . 7 : : t a b l e c e l l (T , X, 7 , 0) : − t a b l e c e l l (T , X, 5 ,V) , V<300) .
21 m a g i c c o n s t r a i n t s : t a b l e c e l l (’T1 ’ , X, Y, V) :−
22 m i s s i n g d a t a : t a b l e c e l l (’T1 ’ , X, Y, V) .
23
24 combined pred : t a b l e c e l l (T , X, Y,V) :−
25 m a g i c c o n s t r a i n t s : t a b l e c e l l (T , X, Y,V) ;
26 f i n a l p r e d : t a b l e c e l l (T , X, Y,V) .
27
28 query (combined pred :) .

In Line 1, we create the theory magic cells from a csv file containing the data in Table
1, by using the custom predicate load_csv/2. Details about the custom predicates and
their exact behavior are presented in Appendix A. Likewise, Line 2 creates the theory
missing data cells by loading the data represented in Table 2.

The rest of the program manipulates these 2 theories using SynthLog primitives
and custom predicates to perform wrangling, prediction and inference. For example,
Lines 4 and 5 perform wrangling, by using the custom predicate detect_tables/2.
More precisely, in Line 4, detect_tables/2 transforms the theory magic cells to
output the theory magic tables. The new theory magic tables contains the same data
as the theory magic cells (i.e. the data from Table 1), but uses a different data model.
Indeed, detect_tables/2 takes a cell based data model and transforms it into a
table based data model. Details of this transformation are given in Appendix A. In this
simple example, wrangling is straightforward, as the data is already nicely formatted.
However, detect_tables/2 still provides information about cell types and detects
headers.

From the theory magic tables, the custom predicate sklearn_predictor/5
learns an inductive model (Lines 7 to 9). More precisely, it learns a logistic regression
model 2 that predicts column 6 of Table T1 (the Table depicted in Table 1) from columns
3 and 4 of Table T1. The theory magic predict contains this newly learned inductive
model. The theory magic predict also contains additional information about the learned
inductive model: on which theory was it learned, using which columns and what type of
inductive model it is. Keeping track of all these information allows us to easily query
any model, hence treating them as first class citizens.

Lines 11 to 13 query an inductive model by manipulating the theory magic predict.
To retrieve an inductive model, we simply specify its properties: it is a predictor and was

2 We use the scikit-learn library: https://scikit-learn.org/stable/index.html

https://scikit-learn.org/stable/index.html

6 Dauxais, Gautrais, et al.

trained on columns 3 and 4 from Table T1. If several inductive models in magic predict
satisfy these requirements, they are all used. SynthLog therefore handles models follow-
ing the inductive database idea of treating them as first class citizens. Then, Line 14
applies the queried inductive model on the theory missing data to create the new the-
ory magic predict, using the custom predicate predict/4. The theory magic predict
contains probabilistic facts representing the predictions of the logistic regression.

Lines 16 and 17 create the theory final pred by selecting a sub-part of the theory
magic predict, using a simple ProbLog rule. Lines 19 and 20 create a new inductive
model, by storing a user-defined rule in the theory magic constraints. This rule states that
if column 5 of Table T in row X has a value below 300, then column 7 (profit) of Table
T in row X has a value of 0 with probability 0.7. In this simple case, this rule could be
specified by a user. However, SynthLog supports learning such rules through the use of
custom predicates. Lines 21 and 22 add a sub-part of theory missing data to the theory
magic constraints. Since the theory magic constraints now contains table_cell
predicates, the rule defined in Line 20 will automatically trigger, hence creating the
probabilistic fact 0.7::table_cell(T,X,7,0) when applicable.

Finally, Lines 24 to 26 create the theory combined pred by performing the union
of sub-parts from the theories magic constraints and final pred through the ’;’/2
operator of ProbLog. As SynthLog combines probabilistic facts from final pred with
the probabilistic rule from magic constraints to create final pred, probabilistic inference
has to be performed. Because SynthLog extends ProbLog, it relies on its probabilistic
inference mechanism to soundly combine both theories. As in ProbLog, the query of
Line 28 determines what probabilistic facts the program should infer. In this case, we
query for the theory final pred to infer the cell values of Table 2, by combining the
logistic regression predictions with the user defined rule. The result is shown in Table 3.

Overall we have seen that SynthLog manipulates theories by using either custom
predicates or native ProbLog operators. This simple way of manipulating theories is
nonetheless powerful, as the resulting program is performing complex inference, taking
into account predictive models and rules, while remaining simple to read.

Table 3. Data (from Table 2) with filled profit values and probability on predictions

Type Country June July August Total Profit Probability
Banana DE 250 650 630 1530 0 0.04
Banana DE 250 650 630 1530 1 0.96
Chocolate NL 210 280 270 760 0 0.46
Chocolate NL 210 280 270 760 1 0.54

4 Conclusion

We have introduced SynthLog, a declarative language for synthesising Inductive Data
Models (IDM). IDMs integrate data and inductive models in a SynthLog theory. Theories
can also be seen as ProbLog programs, consisting of probabilistic facts and clauses. As-
sembling data science components corresponds to manipulating theories, hence making

SynthLog: A Language for Synthesising Inductive Data Models (Extended Abstract) 7

SynthLog a language suitable for automating data science. As SynthLog is an extension
of ProbLog, it natively supports probabilistic reasoning and we have illustrated through
a use case how SynthLog can use probabilistic inference to effortlessly combine results
from different type of models (predictors and constraints).

Having a language to assemble data science components, based on probabilistic logic,
opens new possibilities. First, the inherent uncertainty of data and inductive models can
be leveraged to perform probabilistic inference and provide predictions that reflect our
confidence in our data and inductive models. Second, SynthLog handles different types
of inductive models. More specifically, it handles rules or constraints along with other
machine learning models. Hence, SynthLog provides a great opportunity to bridge user
interaction and model learning through a unique language.

In the SYNTH framework, SynthLog is also first step towards the automation of data
science. Indeed, with a single language combining all data science components, we can
tackle the more challenging task of learning to learn, that is learning which SynthLog
programs are suitable to automatically solve the data science task at hand.

Finally, the further development of SynthLog will likely require the development of
new implementation techniques to support fast inference and learning. This will allow
smoother user interaction and the analysis of larger datasets.

5 Acknowledgements

This work has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No [694980] SYNTH: Synthesising Inductive Data Models)

References

1. Van den Broeck, G., Thon, I., Van Otterlo, M., De Raedt, L.: Dtproblog: A decision-theoretic
probabilistic prolog. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

2. De Bie, T., De Raedt, L., Hoos, H.H., Smyth, P.: Automating data science (dagstuhl seminar
18401). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

3. De Raedt, L.: A perspective on inductive databases. ACM SIGKDD Explorations Newsletter
4(2), 69–77 (2002)

4. De Raedt, L., Blockeel, H., Kolb, S., Teso, S., Verbruggen, G.: Elements of an automatic data
scientist. In: International Symposium on Intelligent Data Analysis. pp. 3–14. Springer (2018)

5. Dries, A., Kimmig, A., Meert, W., Renkens, J., Van den Broeck, G., Vlasselaer, J., De Raedt,
L.: Problog2: Probabilistic logic programming. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 312–315. Springer (2015)

6. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Advances in neural information processing systems.
pp. 2962–2970 (2015)

7. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods, Sys-
tems, Challenges. Springer (2018), in press, available at http://automl.org/book.

8. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications
of the ACM 39(11), 58–64 (1996)

8 Dauxais, Gautrais, et al.

9. Malec, M., Khot, T., Nagy, J., Blasch, E., Natarajan, S.: Inductive logic programming meets
relational databases: An application to statistical relational learning. In: Inductive Logic
Programming (ILP) (2016)

10. Verbruggen, G., De Raedt, L.: Automatically wrangling spreadsheets into machine learning
data formats. In: International Symposium on Intelligent Data Analysis. pp. 367–379. Springer
(2018)

Appendix A SynthLog custom predicates documentation

– load_csv/2: loads the content of a csv file in a theory
• Input

∗ csv file
• Output: Theory with predicates:

∗ cell/3: row id, column id and value of each cell
– detect_tables/2: calls a data wrangler[10] to detect tables in the spreadsheet

• Input
∗ Theory with cell/3 predicates

• Output: Theory with predicates:
∗ table/5: table id, top left row, top left column, height, width
∗ table_cell/4: table id, row id, column id and value of each cell
∗ table_cell_type/4: table id, row id, column id and type of each cell
∗ table_header/5: table id, column id, name, type, list of unique values

– sklearn_predictor/5 learns a scikit-learn predictor
• Input

∗ Theory with table_cell/4 predicates
∗ Inductive model type (from scikit-learn models)
∗ List of columns to use as features
∗ List of columns to predict

• Output: Theory with predicates:
∗ sklearn_predictor/1: inductive model
∗ target/2: inductive model, predicted column
∗ source/2: inductive model, feature column

– predict/5 makes prediction using a previously trained model
• Input

∗ Theory with table_cell/4 predicates
∗ Inductive model
∗ List of columns to use as features
∗ List of columns to predict

• Output: Theory with predicates:
∗ cell_pred/4: table id, row id, column id and value of each cell
∗ predictor/1: inductive model
∗ source/2: inductive model, feature column
∗ confidence/2: inductive model, confidence score

	SynthLog: A Language for Synthesising Inductive Data Models (Extended Abstract)

