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Abstract. We present a machine—learning model for predicting the performance dynamics in
melodic motifs from classical pieces based on musically-meaningful features calculated from score—
like symbolic representation. This model is designed to be capable of providing expressive directions
to musicians within tools for expressive performance practice, and for that reason, in contrast with
previous research, all modeling is done on a phrase level rather than note level. Results show the
model is powerful but struggles with the generalization of predictions. The robustness of the
chosen summarized representation of dynamics makes its application possible even in cases of low
accuracy.
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1 Introduction

The development of computer models of music expression has been an active field of research for over
30 years with a wide range of approaches [9]. Most models that have been proposed by the research
community share the trait of being designed with the goal of improving computer performance. Our
motivation, on the other hand, is to make use of smart technologies to improve the tools available for
learning to play music, and in particular, to help musicians improve their expressive performance skills.
In our envisioned scenario [12], a computer system powered by a meaningful expressive performance
model could give musicians expressive directions during performance or visual feedback regarding a
recording based on information extracted from a musical score. As an effort to enable such scenario, this
paper presents a machine learning model for predicting the dynamics of an ensemble based on high-level
features extracted from a score-like symbolic representation of the musical piece. The proposed method
focuses on modeling long-term dynamics variations, so as to allow a musician to follow the modeled
dynamics suggestions during performance.

1.1 Related Work

Several computer models of expression have been successful in the generation of convincing performances,
particularly of classical piano pieces, as could be witnessed in the RENCON competition [8]. Most recent
are the automatic compositions in the context of project Magenta [7] but the nature of the model makes
composition and performance inherently inseparable whereas our learning scenario primarily requires
producing performances for already composed and well-established pieces. An approach more related to
our own is seen in the YQX system [16], which predicts timing, dynamics and articulation variations
in classical piano pieces, and in [6] where a system for predictions of ornamentations in jazz guitar
melodies is described. In both cases, melodic lines play an important role, characterized by their Narmour
Implication/Realization model classes [11]. In our case, the same type of information is presented to our
machine-learning algorithm using a different representation based on pitch curve coefficients. We differ
from both, however, by predicting phrase—level instead of note-level expression. Most applicable to our
desired scenario are the models reported in [3], which, as in our case, are able to output predictions
of expressive parameters based on score information, but a sensible difference is that these models use
dynamics markings from the score as a starting point whereas ours seek to generate predictions without
using any input indication of expression.
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2 Materials and Methods

2.1 Materials

An adequate dataset for the intended model design required a wide variety of melodic themes in both
audio and synchronized symbolic representation. Corpi of solo piano pieces such as the MAESTRO [7]
were not optimal for the problem since we were interested in mapping the relationship between melody
and harmony in the modeled features, and these elements tend to be fully blended in piano parts. The
MusicNet dataset [14] provides audio—to—score synchronization as well as the necessary melodic diversity
and still allows a clear distinction between main melodic lines and harmonies thanks to the abundance of
chamber music pieces with individual instrument parts, and was thus chosen for the task. To distinguish
the main melody from harmony, violin parts were treated as melodies and all other instruments, as
harmony. Only the subset of pieces which contained a violin were used, resulting in 122 pieces and
a total of 874 minutes of recordings. For estimating the dynamics performed by the ensembles, the
momentary loudness in windows of 0.1s according to the EBU R128 standard [4] was computed with
the help of the Essentia library [1].

2.2 Methods

The designed model consists of a feed—forward neural network trained to predict the dynamics curve of a
musical motif, that is, a short phrase of roughly one or two bars. An important aspect of the modeling is
that each training instance represents a motif rather than a single note. This design decision is motivated
by two beliefs: first, that musicians plan and execute their expressive movements considering a horizon
of a few notes rather than momentarily focusing on each one; and second, that in our music learning
scenario, performance suggestions based on model outputs can be best visualized and interpreted in
that level of granularity. As a consequence of choosing to train the model on motifs, it is necessary
to determine musically-relevant motif boundaries in the pieces as well as appropriate features for this
representation. The motif boundary detection is done by applying the LBDM [2] algorithm to estimate
boundary probabilities, and recursively dividing the piece until one of two conditions is met: either no
boundary probability is two standard deviations larger that the rest, or the resulting segment has fewer
than 10 notes. Table 1 summarizes the input features used for training. Piece keys and modes were
estimated from pitch profiles as detailed in [13]. The output features of the model should represent the
dynamics of the motif and its variation on time. We have summarized that information by approximating
the performance loudness curve extracted with Essentia by a parabola, fit using the least-squares method.
This is consistent with the observation by Todd [10] and other researchers [5,15] that dynamics variations
tend to follow a quadratic profile. Given this approximation, the task of the neural network is optimizing
the three coefficients that define the dynamics curve.

To facilitate the optimization task, some data conditioning was performed. Loudness measurements
of each piece were normalized to zero mean and unit variance to eliminate differences caused by incon-
sistent recording conditions. Motifs with less than 4 notes and outliers (z-score above 10 in any feature)
were discarded, all nominal features were converted to “one-hot” format and all numeric features were
standardized. The resulting dataset had around 10.000 instances, which were divided into training and
test sets containing 90% and 10% of instances, respectively.

The feed-forward network was programmed in the PyTorch! framework and built with two hidden
layers of 25 nodes each, using ReLU as an activation function and standard mean-squared error as a
loss function. The training was run for 1800 epochs in stochastic gradient descent optimization with
batches of 100 instances, learning rate of 0.2 and momentum of 0.1. The learning rate was decreased by
a factor of 10 every 600 epochs. All parameters were cross-validated using a subdivision of the training
set prior to the final training round.

3 Results and Discussion

3.1 Results

Table 2 shows the obtained correlation coefficients for each of the dynamics coefficients predicted for
all instances in the test set. Examples of the loudness curve, ground-truth quadratic approximation
and predicted curve for three motifs can be seen in figure 1. Table 3 provides some perspective on the
accuracy of the modeled dynamics by indicating root-mean-square errors for a deadpan prediction, for
the ground-truth approximations, and for the model’s output.

! http://pytorch.org
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Table 1. Input features of the model.

Feature Data type Description
Beat in Measure z € [0,4] The beat where the motif begins
Metric strength x € {3,2,1,0} | How strong the start beat is
e.g.: down beat =3
Number of notes zeN Total of notes in motif
Duration z € [0, 00) Motif duration in beats
Location in piece z € [0,1] Where in the piece the motif is played

Pitch curve
coefficients

X0,T1,T2 € R

Quadratic coefficients approximating
the MIDI pitches of motif notes

Pitch contour

X0,T1,T2 € R

Quadratic coefficients approximating the

coefficients variation in MIDI pitches of motif notes

Rhythm Drops Boolean Whether a note with higher duration follows
another with shorter duration in the motif

Rhythm Rises Boolean Whether a note with shorter duration follows

another with higher duration in the motif

Rhythm contour

To,x1,T2 € R

Quadratic coefficients approximating the

coefficients variation in duration of motif notes
Strongest note z € 1[0,1] Where in the motif is the note
location with highest metric strength.
Piece key A-G# Tonality estimation of motif piece
Piece mode Major/Minor | Mode estimation of motif piece
Chord probabilities | zo..z¢ € [0,1] | Estimated diatonic chords

presence probabilities
Initial chord degree |I- VII Most likely chord in motif start
Final chord degree |I- VII Most likely chord in motif end
Has Dissonance Boolean Whether there are notes

from a different tonality
Dissonance Location | z € [0, 1] Location of first occurence

of dissonant note
Is solo piece Boolean Solo or ensemble piece

Table 2. Correlation coefficients for output features.

Output coeflicient | Pearson’s r (test set) | Pearson’s r (training set)
z? 0.2177 0.5222
z! 0.2375 0.7054
z° 0.2383 0.6818
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Fig. 1. Comparison of loudness values measured in performance, their ideal (ground-truth) approximation, and
model output for three motifs.
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3.2 Discussion

The Pearson correlation coefficients obtained for the training set show that the model is sufficiently
powerful to predict the complex relationships present in this scenario, but the lower correlation values
seen in the test set indicate that some overfitting occurred, and the meaningful correlations detected
in the data only partially explain the observed dynamics. The deadpan-level (E;) and ground-truth-
level (E,) errors in table 3 can be seen as lower and upper boundaries of accuracy, indicating that this
modeling approach offers a potential reduction in prediction error of up to Fy — Ey = 2.17 dB. The
3.39 dB value obtained with our predictions implies an error reduction of Fy—3.39 = 0.47 dB compared
to the deadpan baseline, which corresponds to 0.47/2.17 = 21.65% of the predicted potential. That is
consistent with the correlation coefficient values and shows that the prediction of coefficients translates
well into prediction of dynamics levels.

Table 3. RMS error in loudness levels prediction.

Prediction type Error level

Deadpan performance 3.86 dB

Ground-truth approximation | 1.69 dB
Model prediction 3.39 dB

The prediction examples highlighted in figure 1 illustrate some relevant conclusions: It can be seen
that most of the short—term variation in loudness levels occurs on note boundaries due to note articu-
lation, and in terms of perceived dynamics can be understood as noise. The quadratic approximation
(labeled ground-truth) provides a cleaner and more intuitive visualization of the variation of loudness
in a phrase, and in most individually—-inspected cases represents it quite well. The leftmost example is
an exception, as it shows a case in which the phrase boundaries chosen by the algorithm don’t seem
to match the performer’s choice, hence the silence during the phrase and the poor results even in the
proposed ground-truth approximation. In many observed cases, as shown in the middle and rightmost
graphs, the predicted curve shows robustness, especially with relation to the z? and x! coefficients,
since some variation in their predictions doesn’t affect the character of the interpretation. It is reason-
able to assume that despite the difference between ground-truth and predicted values in such cases,
performances executed according to instructions from the latter could be considered just as pleasing.

Logical improvements to our proposed approach under consideration include adding information that
relates to the repetition of motifs, detecting key modulations or modal harmony in pieces, augmenting
the training set with multiple different divisions of motifs per piece and experimenting with different
treatments of time—series data such as training with long short—term memory networks.
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