Skip to main content

Multiple Carrier-Vehicle Travelling Salesman Problem

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11995))

  • 1480 Accesses

Abstract

In this paper the Carrier-Vehicle Travelling Salesman Problem (CV-TSP) is extended to the case of 2 carriers and one small vehicle. The paper defines a minimum-time trajectory mission plan for the visit of a group of target points by the small vehicle. In this scenario, the main goal is to optimize the use of both carriers as a support of the vehicle. A Mixed-Integer Second Order Conic Programming (MISCOP) formulation is proposed for the case of a given order of visit. Additionally, the authors develop a fast heuristic which provides close to optimal results in a decent computational time. To end the paper several simulations are computed to show the effectiveness of the proposed solution.

This work has been supported by the European Commission under the Grant Agreement number 774571 (project PANTHEON- “Precision farming of hazelnut orchards”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 52(4), 965–981 (2018). https://doi.org/10.1287/trsc.2017.0791. http://pubsonline.informs.org/doi/10.1287/trsc.2017.0791

    Article  Google Scholar 

  2. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006). https://doi.org/10.1016/j.omega.2004.10.004. https://linkinghub.elsevier.com/retrieve/pii/S0305048304001550

    Article  Google Scholar 

  3. Cattaruzza, D., Absi, N., Feillet, D.: Vehicle routing problems with multiple trips. Ann. Oper. Res. 271(1), 127–159 (2018). https://doi.org/10.1007/s10479-018-2988-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Ren, S., Chen, Z., Chen, M., Wu, H.: Path planning for vehicle-borne system consisting of multi air–ground robots. Robotica, 1–19 (2019). https://doi.org/10.1017/S0263574719000808. https://www.cambridge.org/core/product/identifier/S0263574719000808/type/journal_article

  5. Gambella, C., Lodi, A., Vigo, D.: Exact solutions for the carrier–vehicle traveling salesman problem. Transp. Sci. 52(2), 320–330 (2018). https://doi.org/10.1287/trsc.2017.0771. http://pubsonline.informs.org/doi/10.1287/trsc.2017.0771

    Article  Google Scholar 

  6. Garone, E., Naldi, R., Casavola, A.: Traveling salesman problem for a class of carrier-vehicle systems. J. Guid. Control Dyn. 34(4), 1272–1276 (2011). https://doi.org/10.2514/1.50539. http://arc.aiaa.org/doi/10.2514/1.50539

    Article  Google Scholar 

  7. Garone, E., Naldi, R., Casavola, A., Frazzoli, E.: Cooperative path planning for a class of carrier-vehicle systems. In: 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 2456–2462. IEEE (2008). https://doi.org/10.1109/CDC.2008.4739357. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4739357

  8. Gasparri, A., Ulivi, G., Bono Rossello, N., Garone, E.: The H2020 project Pantheon: precision farming of hazelnut orchards (extended abstract), Florence, Italy, September 2018

    Google Scholar 

  9. Jiang, J., Tao, J., Xin, G.: An unmanned aerial vehicle cluster network cruise system for monitor. In: E3S Web Conference, vol. 38, p. 01029 (2018). https://doi.org/10.1051/e3sconf/20183801029. https://www.e3s-conferences.org/10.1051/e3sconf/20183801029

  10. Klauco, M., Blazek, S., Kvasnica, M., Fikar, M.: Mixed-integer SOCP formulation of the path planning problem for heterogeneous multi-vehicle systems. In: 2014 European Control Conference (ECC), Strasbourg, France, pp. 1474–1479. IEEE, June 2014. https://doi.org/10.1109/ECC.2014.6862400. http://ieeexplore.ieee.org/document/6862400/

  11. Koç, C., Bektaş, T., Jabali, O., Laporte, G.: Thirty years of heterogeneous vehicle routing. Eur. J. Oper. Res. 249(1), 1–21 (2016). https://doi.org/10.1016/j.ejor.2015.07.020. https://linkinghub.elsevier.com/retrieve/pii/S0377221715006530

    Article  MathSciNet  MATH  Google Scholar 

  12. Othman, M.S.b., Shurbevski, A., Karuno, Y., Nagamochi, H.: Routing of carrier-vehicle systems with dedicated last-stretch delivery vehicle and fixed carrier route. J. Inf. Process. 25(0), 655–666 (2017). https://doi.org/10.2197/ipsjjip.25.655. https://www.jstage.jst.go.jp/article/ipsjjip/25/0/25_655/_article

  13. Ren, S., Chen, Y., Xiong, L., Chen, Z., Chen, M.: Path planning for the marsupial double-UAVs system in air-ground collaborative application. In: 2018 37th Chinese Control Conference (CCC), Wuhan, pp. 5420–5425. IEEE, July 2018. https://doi.org/10.23919/ChiCC.2018.8483087. https://ieeexplore.ieee.org/document/8483087/

  14. Wei, L., Li, Y.B., Xu, J.H., Luo, X.X.: Unmanned aerial vehicle maritime cruise base site selection strategy research in the Bohai Sea. In: AMM, vol. 724, pp. 378–382 (2015). https://doi.org/10.4028/www.scientific.net/AMM.724.378. https://www.scientific.net/AMM.724.378

  15. Williams, H.P.: Model Building in Mathematical Programming, 5th edn., p. 433, March 2013

    Google Scholar 

  16. Yao, B., Yu, B., Hu, P., Gao, J., Zhang, M.: An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Ann. Oper. Res. 242(2), 303–320 (2015). https://doi.org/10.1007/s10479-015-1792-x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bono Rossello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fahradyan, T., Bono Rossello, N., Garone, E. (2020). Multiple Carrier-Vehicle Travelling Salesman Problem. In: Mazal, J., Fagiolini, A., Vasik, P. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science(), vol 11995. Springer, Cham. https://doi.org/10.1007/978-3-030-43890-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43890-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43889-0

  • Online ISBN: 978-3-030-43890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics