Skip to main content

Modelling and Simulation Paradigms to Support Autonomous System Operationalization

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11995))

Abstract

Military Autonomous Systems are one of the critical elements in the current and future operations. System with a level of autonomy is known in the military for more than 50 years. However fully autonomous systems have not been yet fully operationalized. Taken as a military capability, autonomous system must be analyzed, designed and implemented to reflect all Doctrine, Organization, Training, Materiel, Leadership, Personnel, Facilities, Interoperability and Information (DOTMLPFI) aspects. The first part of the paper describes autonomous system current state of the art and challenges following DOTMPLFI classification. Secondly, the modeling and simulation paradigms, Discrete Event Simulation, Agent Based Modelling and System Dynamics are proposed to be the right candidate for each DOTMLPFI aspects of AS capability development. There are two Use Cases, the first one based on Agent Based Modeling paradigm and the second one based on System Dynamics paradigm, both demonstrating advantages and drawbacks of a single modelling and simulation paradigm. The last part of the paper discusses differences, and mutual support of these two paradigms in the context of AS capability development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fučík, J., Frank, L., Stojar, R.: Autonomous systems and chinese strategic thinking. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 588–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_44. ISSN 0302-9743, ISBN 978-3-030-14983-3

    Chapter  Google Scholar 

  2. Stojar, R.: The robotisation of armed conflict. In: 4th International Multidisciplinare Scientific Conference, SGEM 2017, Book 1, Modern Science, pp. 269–276. STEF92, Sofia (2017). ISSN 2367-5659. ISBN 978-619-7408-14-0

    Google Scholar 

  3. Vijay, K.: 50 years of robotics. IEEE Robot. Autom. Mag. 17(3), 8 (2010)

    Article  Google Scholar 

  4. Hodicky, J., Prochazka, D., Prochazka, J.: Training with and of autonomous system – modelling and simulation approach. In: Mazal, J. (ed.) MESAS 2017. LNCS, vol. 10756, pp. 383–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76072-8_27. ISBN 978-3-319-76071-1

    Chapter  Google Scholar 

  5. Nohel, J., Stodola, P., Flasar, Z.: Model of the Optimal Maneuver Route. IntechOpen. https://doi.org/10.5772/intechopen.85566. https://www.intechopen.com/online-first/model-of-the-optimal-maneuver-route

  6. Stodola, P., Nohel, J., Mazal, J.: Model of optimal maneuver used in tactical decision support system. In: 21st International Conference on Methods and Models in Automation and Robotics, MMAR 2016, pp. 1240–1245 (2016). Article no. 7575316

    Google Scholar 

  7. Stodola, P., Mazal, J.: Model of optimal cooperative reconnaissance and its solution using metaheuristic methods. Def. Sci. J. 67(5), 529–535 (2017). ISSN 0011-748X

    Article  Google Scholar 

  8. Hrabec, D., Mazal, J., Stodola, P.: Optimal manoeuvre for two cooperative military elements under uncertain enemy threat. Int. J. Oper. Res. 35(2), 263–277 (2019). ISSN 1745-7645

    Article  MathSciNet  Google Scholar 

  9. Mazal, J., Stodola, P., Procházka, D., Kutěj, L., Ščurek, R., Procházka, J.: Modelling of the UAV safety manoeuvre for the air insertion operations. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 337–346. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_27. ISSN 0302-9743, ISBN 978-3-319-47604-9

    Chapter  Google Scholar 

  10. Kot, T., Krys, V., Novak, P.: Simulation system for teleoperated mobile robots. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906, pp. 164–172. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13823-7_15. ISBN 978-3-319-13822-0

    Chapter  Google Scholar 

  11. Doskocil, R., Hosek, J., Krivanek, V., Stefek, A., Bergeon, Y.: Stereo vision for teleoperated robot. In: 16th International Conference on Mechatronics – Mechatronika 2014, Brno, University of Technology, pp. 511–518. IEEE, December 2014

    Google Scholar 

  12. Nahavandi, S.: Trusted autonomy between humans and robots: toward human-on-the-loop in robotics and autonomous systems. IEEE Syst. Man Cybern. Mag. 3(1), 10–17 (2017)

    Article  Google Scholar 

  13. Nohel, J.: Possibilities of raster mathematical algorithmic models utilization as an information support of military decision making process. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_41. ISSN 0302-9743, ISBN 978-3-030-14984-0

    Chapter  Google Scholar 

  14. Coeckelbergh, M., Funk, M.: Data, speed, and know-how: ethical and philosophical issues in human-autonomous systems cooperation in military contexts. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 17–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_2

    Chapter  Google Scholar 

  15. David, W.: The rise of the robotic weapon systems in armed conflicts. In: Proceedings of 7 th Crisis Management and Disaster Response Annual Conference, Sofia, 5–6 June 2019 (2019). https://www.cmdrcoe.org/download.php?id=1434

  16. Kratky, M., Farlik, J.: Countering UAVs - the mover of research in military technology. Def. Sci. J. 68(5), 460–466 (2018). ISSN 0011-748X

    Article  Google Scholar 

  17. Farlik, J., Kratky, M., Casar, J., Stary, V.: Multispectral detection of commercial unmanned aerial vehicles. Sensors 19(7), 1–28 (2019). ISSN 1424-8220

    Article  Google Scholar 

  18. Hodicky, J.: Autonomous systems operationalization gaps overcome by modelling and simulation. In: Hodicky, J. (ed.) MESAS 2016. LNCS, vol. 9991, pp. 40–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47605-6_4. ISSN 0302-9743, ISBN 978-3-319-47604-9

    Chapter  Google Scholar 

  19. Hodicky, J.: Modelling and simulation in the autonomous systems’ domain – current status and way ahead. In: Hodicky, J. (ed.) MESAS 2015. LNCS, vol. 9055, pp. 17–23. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22383-4_2. ISSN 03029743, ISBN 978-331922382-7

    Chapter  Google Scholar 

  20. Biagini, M., Corona, F.: M&S-based robot swarms prototype. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_22

    Chapter  Google Scholar 

  21. Skrzypecki, S., Pierzchała, D., Tarapata, Z.: Distributed simulation environment of unmanned aerial systems for a search problem. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 65–81. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_6

    Chapter  Google Scholar 

  22. Fan, J., Li, D., Li, R., Yang, T., Wang, Q.: Analysis for cooperative combat system of manned-unmanned aerial vehicles and combat simulation. In: Proceedings of 2017 IEEE International Conference on Unmanned Systems, ICUS 2017, January 2018, pp. 204–209 (2018). https://doi.org/10.1109/icus.2017.8278341

  23. Stary, V., Krivanek, V., Stefek, A.: Optical detection methods for laser guided unmanned devices. J. Commun. Netw. 20(5), 464–472 (2018)

    Article  Google Scholar 

  24. Spisak, J.: Military concepts – a background for future capabilities development. Econ. Manag. 7(1), 75–81 (2013)

    Google Scholar 

  25. Hodicky, J.: HLA as an experimental backbone for autonomous system integration into operational field. In: Hodicky, J. (ed.) MESAS 2014. LNCS, vol. 8906, pp. 121–126. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13823-7_11

    Chapter  Google Scholar 

  26. Hodicky, J., Prochazka, D., Prochazka, J.: Automation in experimentation with constructive simulation. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 566–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_42. ISBN 978-3-030-14984-0

    Chapter  Google Scholar 

  27. Kim, K., et al.: Modeling of complex scenarios using LVC simulation. In: Proceedings - Winter Simulation Conference, January 2015, pp. 2931–2941 (2015). https://doi.org/10.1109/wsc.2014.7020133. Article no. 7020133

  28. Postal, G.R., Pavan, W., Rieder, R.A.: Virtual environment for drone pilot training using VR devices. In: Proceedings - 18th Symposium on Virtual and Augmented Reality, SVR 2016, pp. 183–187 (2016). https://doi.org/10.1109/svr.2016.39. Article no. 7517273

  29. Ören, T., Mittal, S., Durak, U.: A paradigm shift from model-based to simulation-based: timeliness and usefulness for many disciplines. Int. J. Comput. Softw. Eng. 3, 125 (2018). https://doi.org/10.15344/2456-4451/2018/126

    Article  Google Scholar 

  30. Borshchev, A.: Multi-method modelling: anylogic. Discret Event Simul. Syst. Dyn. Manag. Decis. Mak., 248–279. https://doi.org/10.1002/9781118762745.ch12

  31. Hodicky, J.: Standards to support military autonomous system life cycle. In: Březina, T., Jabłoński, R. (eds.) MECHATRONICS 2017. AISC, vol. 644, pp. 671–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65960-2_83

    Chapter  Google Scholar 

  32. Sterman, J.D.: Business Dynamics Systems Thinking and Modeling for a Complex World. Irwin/McGraw-Hill, Boston (2000). ISBN 007238915X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hodicky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hodicky, J., Prochazka, D. (2020). Modelling and Simulation Paradigms to Support Autonomous System Operationalization. In: Mazal, J., Fagiolini, A., Vasik, P. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science(), vol 11995. Springer, Cham. https://doi.org/10.1007/978-3-030-43890-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43890-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43889-0

  • Online ISBN: 978-3-030-43890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics