Skip to main content

Simulation Experiments for an Approximate Definition of the Macroscopic Fundamental Diagram

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Abstract

The paper presents some exploratory experiments for defining a Macroscopic Fundamental Diagram starting from data collected in some specific sensor network layouts, that is by just monitoring the cordon of a study area. Variables defined in the original proposition of the MFD where here re-defined by just considering the number of vehicles estimated to be present in the study area (N) by means of this layout. We found that in some cases a strong correlation among defined variables can be found, and also similar patterns in the depicted MFD are evidenced.

Findings of the paper are limited, given the limited amount of simulation performed, and also considering the limited number of factors varied in the simulations; as expected, results seem to be strongly affected by the traffic demand. Apart that, the approach is worth to be investigated, because this kind of layout is becoming very common in some urban contexts (e.g. in Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudolas, K., Geroliminis, N.: Perimeter and boundary flow control in multi-reservoir heterogeneous networks. Transp. Res. Part B Methodol. (2013). https://doi.org/10.1016/j.trb.2013.07.003

  • Botte, M., Di Salvo, C., Caropreso, C., Montella, B., D’Acierno, L.: Defining economic and environmental feasibility thresholds in the case of rail signalling systems based on satellite technology. In: Proceedings of the 16th IEEE International Conference on Environment and Electrical Engineering (IEEE EEEIC 2016), Florence, Italy, June 2016. https://doi.org/10.1109/eeeic.2016.7555878

  • Buisson, C., Ladier, C.: Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams. Transp. Res. Rec. J. Transp Res Board 2124, 127–136 (2009). https://doi.org/10.3141/2124-12

    Article  Google Scholar 

  • Cartenì, A.: Urban sustainable mobility. Part 2: simulation models and impacts estimation. Transp. Probl. 10(1), 5–16 (2015). ISSN 1896-0596

    Article  Google Scholar 

  • Cartenì, A., Henke, I., Molitierno, C.: A cost-benefit analysis of the metro line 1 in Naples, Italy. WSEAS Trans. Bus. Econ. 15, 529–538 (2018). Print ISSN 1109-9526

    Google Scholar 

  • Cascetta, E., Cartenì, A., Carbone, A.: The quality in public transportation. The campania regional metro system [La progettazione quality-based nel trasporto pubblico locale. Il sistema di metropolitana regionale delia Campania]. Ingegneria Ferroviaria 68(3), 241–261 (2013). ISSN 0020-0956

    Google Scholar 

  • D’Acierno, L., Gallo, M., Montella, B., Placido, A.: The definition of a model framework for managing rail systems in the case of breakdowns. In: Proceedings of IEEE ITSC 2013 – 16th International IEEE Annual Conference on Intelligent Transportation Systems, The Hague, The Netherlands, October 2013, art. no. 6728372, pp. 1059–1064 (2013). https://doi.org/10.1109/itsc.2013.6728372

  • D’Acierno, L., Gallo, M., Montella, B., Placido, A.: Analysis of the interaction between travel demand and rail capacity constraints. WIT Trans. Built Environ. 128, 197–207 (2012). https://doi.org/10.2495/UT120181

    Article  Google Scholar 

  • D’Acierno, L., Botte, M., Placido, A., Caropreso, C., Montella, B.: Methodology for determining dwell times consistent with passenger flows in the case of metro services. Urban Rail Transit 3(2), 73–89 (2017). https://doi.org/10.1007/s40864-017-0062-4

    Article  Google Scholar 

  • Daganzo, C.F.: Urban gridlock: macroscopic modeling and mitigation approaches. Transp. Res. Part B Methodol. 41, 49–62 (2007). https://doi.org/10.1016/j.trb.2006.03.001

    Article  Google Scholar 

  • Daganzo, C.F., Geroliminis, N.: An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transp. Res. Part B Methodol. 42, 771–781 (2008). https://doi.org/10.1016/j.trb.2008.06.008

    Article  Google Scholar 

  • Gayah, V.V., Daganzo, C.F.: Clockwise hysteresis loops in the macroscopic fundamental diagram: an effect of network instability. Transp. Res. Part B Methodol. 45, 643–655 (2011). https://doi.org/10.1016/j.trb.2010.11.006

    Article  Google Scholar 

  • Geroliminis, N., Daganzo, C.F.: Macroscopic modeling of traffic in cities. In: TRB 86th Annual Meeting 07–0413 (2007). https://doi.org/10.1002/tcr.201100032

  • Geroliminis, N., Haddad, J., Ramezani, M.: Optimal perimeter control for two urban regions with macroscopic fundamental diagrams: a model predictive approach. IEEE Trans. Intell. Transp. Syst. 14, 348–359 (2013). https://doi.org/10.1109/TITS.2012.2216877

    Article  Google Scholar 

  • Geroliminis, N., Sun, J.: Properties of a well-defined macroscopic fundamental diagram for urban traffic. Transp. Res. Part B Methodol. 45, 605–617 (2011a). https://doi.org/10.1016/j.trb.2010.11.004

    Article  Google Scholar 

  • Geroliminis, N., Sun, J.: Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks. Transp Res Part A Policy Pract 45, 966–979 (2011b). https://doi.org/10.1016/j.sbspro.2011.04.515

    Article  Google Scholar 

  • Girault, J.T., Gayah, V.V., Guler, I., Menendez, M.: Exploratory analysis of signal coordination impacts on macroscopic fundamental diagram. Transp. Res. Rec.: J. Transp. Res. Board 2560, 36–46 (2016). https://doi.org/10.3141/2560-05

    Article  Google Scholar 

  • Godfrey, J.W.: The mechanism of a road network. Traffic Eng. Contr. 11, 323–327 (1969)

    Google Scholar 

  • Greenberg, H.: An analysis of traffic flow. Oper. Res. 7(1), 79–85 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Greenshields, B.D.: A study of traffic capacity. In: Proceedings of Highway Research Board, vol. 14, pp. 448–477 (1934)

    Google Scholar 

  • Haddad, J., Geroliminis, N.: On the stability of traffic perimeter control in two-region urban cities. Transp. Res. Part B Methodol. 46, 1159–1176 (2012). https://doi.org/10.1016/j.trb.2012.04.004

    Article  Google Scholar 

  • Herman, R., Prigogine, I.: A two-fluid approach to town traffic. Science 204(4389), 148–151 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Ji, Y., Fitton, R., Swan, W., Webster, P.: Assessing overheating of the UK existing dwellings – a case study of replica Victorian end terrace house. Build. Environ. 77, 1–11 (2014). https://doi.org/10.1016/j.buildenv.2014.03.012

    Article  Google Scholar 

  • Ji, Y., Geroliminis, N.: On the spatial partitioning of urban transportation networks. Transp. Res. Part B Methodol. 46, 1639–1656 (2012). https://doi.org/10.1016/j.trb.2012.08.005

    Article  Google Scholar 

  • Laval, J.: The effect of signal timing and network irregularities in the macroscopic fundamental diagram. Jorge Laval Georgia Institute of Technology Department of Civil (2010)

    Google Scholar 

  • Loder, A., Ambühl, L., Menendez, M., Axhausen, K.W.: Empirics of multi-modal traffic networks – using the 3D macroscopic fundamental diagram. Transp. Res. Part C Emerg. Technol. (2017). https://doi.org/10.1016/j.trc.2017.06.009

    Article  Google Scholar 

  • Mahmassani, H., Williams, J.C., Herman, R.: Performance of urban traffic networks. In: Gartner, N.H., Wilson, N.H.M. (eds.) 10th International Symposium on Transportation and Traffic Theory. Elsevier, Amsterdam (1987)

    Google Scholar 

  • Mahmassani, H.S., Saberi, M., Zockaie, A.: Urban network gridlock: theory, characteristics, and dynamics. Transp. Res. Part C Emerg. Technol. 36, 480–497 (2013). https://doi.org/10.1016/j.trc.2013.07.002

    Article  Google Scholar 

  • Smeed, R.J.: The Traffic Problem in Towns. Statistical Society, Manchester (1961)

    Google Scholar 

  • Thomson, J.: Speeds and flows of traffic in central London: 2 speed-flow relations. Traffic Eng. Contr. 8, 721–725 (1967)

    Google Scholar 

  • Tsubota, T., Bhaskar, A., Chung, E.: Macroscopic fundamental diagram for Brisbane, Australia empirical findings on network partitioning and incident detection Takahiro. Transp. Res. Rec. J. Transp. Res. Board 2421, 12–21 (2014). https://doi.org/10.3141/2421-02

    Article  Google Scholar 

  • Wang, P.F., Wada, K., Akamatsu, T., Hara, Y.: An empirical analysis of macroscopic fundamental diagrams for Sendai road networks. Interdiscip. Inf. Sci. 21, 49–61 (2015). https://doi.org/10.4036/iis.2015.49

    Article  Google Scholar 

  • Wardrop, J.: Journey speed and flow in central urban areas. Traffic Eng. Contr. 9, 528–532 (1968)

    Google Scholar 

  • Williams, J.C., Mahmassani, H.S., Herman, R.: Urban traffic network flow models. Transp. Res. Rec. Transp. Res. Board 1112, 78–88 (1987)

    Google Scholar 

  • Zahavi, Y.: Traffic performance evaluation of road networks by the alpha-relationship. Parts 1 and 2 - Traffic Eng. Control, 14(5 and 6), pp. 228–231 and 292–293 (1972)

    Google Scholar 

  • Zheng, N., Rérat, G., Geroliminis, N.: Time-dependent area-based pricing for multimodal systems with heterogeneous users in an agent-based environment. Transp. Res. Part C Emerg. Technol. 62, 133–148 (2016). https://doi.org/10.1016/j.trc.2015.10.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Pariota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pariota, L., Di Costanzo, L., Spera, F., Bifulco, G.N. (2020). Simulation Experiments for an Approximate Definition of the Macroscopic Fundamental Diagram. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_128

Download citation

Publish with us

Policies and ethics