Skip to main content

Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Abstract

The role of remote resources, such as the ones provided by Cloud infrastructures, is of paramount importance for the implementation of cost effective, yet reliable software systems to provide services to third parties. Cost effectiveness is a direct consequence of a correct estimation of resource usage, to be able to define a budget and estimate the right price to put own services on the market. Attacks that overload resources with non legitimate requests, being them explicit attacks or just malicious, non harmful resource engagements, may push the use of Cloud resources beyond estimation, causing additional costs, or unexpected energy usage, or a lower overall quality of services, so intrusion detection devices or firewalls are set to avoid undesired accesses. We propose the use of Generative Adversarial Neural Networks (GANs) to setup a method for shaping request based attacks capable of reaching resources beyond defenses. The approach is studied by using a publicly available traffic data set, to test the concept and demonstrate its potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato, F., Mazzeo, A., Moscato, V., Picariello, A.: Semantic management of multimedia documents for e-government activity, pp. 1193–1198 (2009). https://doi.org/10.1109/CISIS.2009.195

  2. Amato, F., Moscato, V., Picariello, A., Piccialli, F.: SOS: a multimedia recommender system for online social networks. Future Gen. Comput. Syst. 93, 914–923 (2019). https://doi.org/10.1016/j.future.2017.04.028

    Article  Google Scholar 

  3. Amato, F., Di Martino, B., Marulli, F., Moscato, F.: A federation of cognitive cloud services for trusting data sources. In: Conference on Complex, Intelligent, and Software Intensive Systems pp. 1022–1031. Springer, Heidelberg (2018)

    Google Scholar 

  4. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: Formal methods for prostate cancer gleason score and treatment prediction using radiomic biomarkers. Magn. Reson. Imaging (2019)

    Google Scholar 

  5. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: Prostate gleason score detection and cancer treatment through real-time formal verification. IEEE Access 7, 186236–186246 (2019)

    Article  Google Scholar 

  6. Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Leila: formal tool for identifying mobile malicious behaviour. IEEE Trans. Softw. Eng. 45(12), 1230–1252 (2018)

    Article  Google Scholar 

  7. D’Angelo, G., Palmieri, F., Rampone, S.: Detecting unfair recommendations in trust-based pervasive environments. Inf. Sci. 486, 31–51 (2019)

    Article  Google Scholar 

  8. De Francesco, N., Lettieri, G., Santone, A., Vaglini, G.: Grease: a tool for efficient “nonequivalence” checking. ACM Trans. Softw. Eng. Methodol. (TOSEM) 23(3), 24 (2014)

    Google Scholar 

  9. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  10. Dei Rossi, G.L., Iacono, M., Marin, A.: Evaluating the impact of eDoS attacks to cloud facilities. In: 9th EAI International Conference on Performance Evaluation Methodologies and Tools. ACM (2016)

    Google Scholar 

  11. Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F.: Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Inf. Sci. 479, 448–455 (2019)

    Article  Google Scholar 

  12. Giménez, A.C.T., Marañón, G.: Cisc2010 dataset (2012)

    Google Scholar 

  13. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014)

    Google Scholar 

  14. Gribaudo, M., Iacono, M., Manini, D.: Performance evaluation of massively distributed microservices based applications. In: Proceedings of 31st European Conference on Modelling and Simulation, ECMS 2017, pp. 598–604 (2017)

    Google Scholar 

  15. Gribaudo, M., Iacono, M., Manini, D.: Performance evaluation of replication policies in microservice based architectures. Electron. Notes Theoret. Comput. Sci. 337, 45–65 (2018)

    Article  Google Scholar 

  16. Li, J., Zhou, L., Li, H., Yan, L., Zhu, H.: Dynamic traffic feature camouflaging via generative adversarial networks. In: 2019 IEEE Conference on Communications and Network Security (CNS), pp. 268–276, June 2019

    Google Scholar 

  17. Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., García-Teodoro, P., Theron, R.: UGR ’16: a new dataset for the evaluation of cyclostationarity-based network IDSs. Comput. Secur. 73, 411–424 (2018)

    Google Scholar 

  18. Martinelli, F., Marulli, F., Mercaldo, F.: Evaluating convolutional neural network for effective mobile malware detection. Procedia Comput. Sci. 112, 2372–2381 (2017)

    Article  Google Scholar 

  19. Marulli, F., Visaggio, C.A.: Adversarial deep learning for energy management in buildings. In: Proceedings of the 2019 Summer Simulation Conference, p. 50. Society for Computer Simulation International (2019)

    Google Scholar 

  20. Mercaldo, F., Santone, A.: Deep learning for image-based mobile malware detection. J. Comput. Virol. Hacking Tech. 1–15 (2020)

    Google Scholar 

  21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  22. Palmieri, F., Fiore, U., Castiglione, A., De Santis, A.: On the detection of card-sharing traffic through wavelet analysis and support vector machines. Appl. Soft Comput. J. 13(1), 615–627 (2013)

    Article  Google Scholar 

  23. Santone, A.: Automatic verification of concurrent systems using a formula-based compositional approach. Acta Informatica 38(8), 531–564 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wichers, D., Williams, J.: OWASP Top-10 2017. OWASP Foundation (2017)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by MIUR - SecureOpenNets and EU SPARTA and CyberSANE projects. This work was also partially funded by the project “Attrazione e Mobilità dei Ricercatori” Italian PON Programme (PON_AIM 2018 num. AIM1878214-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mauro Iacono , Fiammetta Marulli or Francesco Mercaldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Campanile, L. et al. (2020). Towards the Use of Generative Adversarial Neural Networks to Attack Online Resources. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_81

Download citation

Publish with us

Policies and ethics