Skip to main content

On the Regression and Assimilation for Air Quality Mapping Using Dense Low-Cost WSN

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1151))

  • 2253 Accesses

Abstract

The use of low-cost Wireless Sensor Networks (WSNs) for air quality monitoring has recently attracted a great deal of interest. Indeed, the cost-effectiveness of emerging sensors and their small size allow for dense deployments and hence improve the spatial granularity. However, these sensors offer a low accuracy and their measurement errors may be significant due to the underlying sensing technologies. The main aim of this work is to reconsider and compare some regression approaches to assimilation ones while taking into account the intrinsic characteristics of dense deployment of low-cost WSN for air quality monitoring (high density, numerical model errors and sensing errors). For that, we propose a general framework that allows the comparison of different strategies based on numerical simulations and adequate estimation of the simulation error covariances as well as the sensing errors covariances. While considering the case of Lyon city and a widely used numerical model, we characterize the simulation errors, conduct extensive simulations and compare several regression and assimilation approaches. The results show that from a given sensing error threshold, regression methods present an optimal sensor density from which the mapping quality decreases. Results also show that the Random Forest method is often the best regression approach but still less efficient than the BLUE assimilation approach when using adequate correction parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://data.grandlyon.com/.

  2. 2.

    https://donneespubliques.meteofrance.fr/.

  3. 3.

    https://earthexplorer.usgs.gov/.

References

  1. World Health Organization: Burden of disease from the joint effects of household and ambient air pollution for 2016 (2018). https://www.who.int/airpollution/data/AP_joint_effect_BoD_results_May2018.pdf

  2. Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell, M., Norford, L., Britter, R.: The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75, 199–205 (2015)

    Article  Google Scholar 

  3. Schneider, P., Castell, N., Dauge, F.R., Vogt, M., Lahoz, W.A., Bartonova, A.: A network of low-cost air quality sensors and its use for mapping urban air quality. In: Mobile Information Systems Leveraging Volunteered Geographic Information for Earth Observation, pp. 93–110. Springer (2018)

    Google Scholar 

  4. Arroyo, P., Herrero, J.L., Suárez, J.I., Lozano, J.: Wireless sensor network combined with cloud computing for air quality monitoring. Sensors 19(3), 691 (2019)

    Article  Google Scholar 

  5. Hasenfratz, D., Saukh, O., Walser, C., Hueglin, C., Fierz, M., Arn, T., Beutel, J., Thiele, L.: Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 16, 268–285 (2015)

    Article  Google Scholar 

  6. Anjomshoaa, A., Duarte, F., Rennings, D., Matarazzo, T.J., de Souza, P., Ratti, C.: City scanner: building and scheduling a mobile sensing platform for smart city services. IEEE Internet Things J. 5(6), 4567–4579 (2018)

    Article  Google Scholar 

  7. Gerboles, M., Borowiak, A., Spinelle, L.: Measuring Air Pollution with Low-Cost Sensors. European Commission, Brochure (2017)

    Google Scholar 

  8. Boubrima, A., Bechkit, W., Rivano, H.: Optimal WSN deployment models for air pollution monitoring. IEEE Trans. Wirel. Commun. 16(5), 2723–2735 (2017)

    Article  Google Scholar 

  9. Boubrima, A., Bechkit, W., Hervé, R.: On the deployment of wireless sensor networks for air quality mapping: optimization models and algorithms. IEEE Trans. Networking 27, 1629–1642 (2019)

    Article  Google Scholar 

  10. Soulhac, L., Salizzoni, P., Cierco, F.-X., Perkins, R.: The model sirane for atmospheric urban pollutant dispersion; Part I, presentation of the model. Atmos. Environ. 45(39), 7379–7395 (2011)

    Article  Google Scholar 

  11. Soulhac, L., Salizzoni, P., Mejean, P., Didier, D., Rios, I.: The model sirane for atmospheric urban pollutant dispersion; Part II, validation of the model on a real case study. Atmos. Environ. 49, 320–337 (2012)

    Article  Google Scholar 

  12. Soulhac, L., Nguyen, C.V., Volta, P., Salizzoni, P.: The model sirane for atmospheric urban pollutant dispersion, Part III: validation against NO2 yearly concentration measurements in a large urban agglomeration. Atmos. Environ. 167, 377–388 (2017)

    Article  Google Scholar 

  13. Kerckhoffs, J., Wang, M., Meliefste, K., Malmqvist, E., Fischer, P., Janssen, N.A., Beelen, R., Hoek, G.: A national fine spatial scale land-use regression model for ozone. Environ. Res. 140, 440–448 (2015)

    Article  Google Scholar 

  14. Marjovi, A., Arfire, A., Martinoli, A.: Extending urban air quality maps beyond the coverage of a mobile sensor network: data sources, methods, and performance evaluation. In: EWSN (2017)

    Google Scholar 

  15. Adam-Poupart, A., Brand, A., Fournier, M., Jerrett, M., Smargiassi, A.: Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined bayesian maximum entropy-lur approaches. Environ. Health Perspect. 122(9), 970–976 (2014)

    Article  Google Scholar 

  16. Bocquet, M., Elbern, H., Eskes, H., Hirtl, M., Žabkar, R., Carmichael, G., Flemming, J., Inness, A., Pagowski, M., Pérez Camaño, J., et al.: Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models. Atmos. Chem. Phys. 15(10), 5325–5358 (2015)

    Article  Google Scholar 

  17. Tilloy, A., Mallet, V., Poulet, D., Pesin, C., Brocheton, F.: Blue-based no 2 data assimilation at urban scale. J. Geophys. Res. Atmos. 118(4), 2031–2040 (2013)

    Article  Google Scholar 

  18. Kumar, U., De Ridder, K., Lefebvre, W., Janssen, S.: Data assimilation of surface air pollutants (O3 and NO2) in the regional-scale air quality model aurora. Atmos. Environ. 60, 99–108 (2012)

    Article  Google Scholar 

  19. Wang, X., Mallet, V., Berroir, J.-P., Herlin, I.: Assimilation of OMI NO2 retrievals into a regional chemistry-transport model for improving air quality forecasts over europe. Atmos. Environ. 45(2), 485–492 (2011)

    Article  Google Scholar 

  20. Xie, X., Semanjski, I., Gautama, S., Tsiligianni, E., Deligiannis, N., Rajan, R., Pasveer, F., Philips, W.: A review of urban air pollution monitoring and exposure assessment methods. ISPRS Int. J. Geo-Inform. 6(12), 389 (2017)

    Article  Google Scholar 

  21. Jerrett, M., Arain, M., Kanaroglou, P., Beckerman, B., Crouse, D., Gilbert, N., Brook, J., Finkelstein, N., Finkelstein, M.: Modeling the intra-urban variability of ambient traffic pollution in Toronto, Canada. J. Toxicol. Environ. Health Part A 70(3–4), 200–212 (2007)

    Article  Google Scholar 

  22. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: Xgboost: extreme gradient boosting. R package version 0.4-2, pp. 1–4 (2015)

    Google Scholar 

  23. Biau, G.: Analysis of a random forests model. J. Mach. Learn. Res. 13, 1063–1095 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the “LABEX IMU” (ANR-10-LABX-0088) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Anis Fekih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fekih, M.A., Mokhtari, I., Bechkit, W., Belbaki, Y., Rivano, H. (2020). On the Regression and Assimilation for Air Quality Mapping Using Dense Low-Cost WSN. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_51

Download citation

Publish with us

Policies and ethics