Skip to main content

Resource-Aware Algorithms for Distributed Loop Closure Detection with Provable Performance Guarantees

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

Inter-robot loop closure detection, e.g., for collaborative simultaneous localization and mapping (CSLAM), is a fundamental capability for many multirobot applications in GPS-denied regimes. In real-world scenarios, this is a resource-intensive process that involves exchanging observations and verifying potential matches. This poses severe challenges especially for small-size and low-cost robots with various operational and resource constraints that limit, e.g., energy consumption, communication bandwidth, and computation capacity. This paper presents resource-aware algorithms for distributed inter-robot loop closure detection. In particular, we seek to select a subset of potential inter-robot loop closures that maximizes a monotone submodular performance metric without exceeding computation and communication budgets. We demonstrate that this problem is in general NP-hard, and present efficient approximation algorithms with provable performance guarantees. A convex relaxation scheme is used to certify near-optimal performance of the proposed framework in real and synthetic SLAM benchmarks.

Y. Tian and K. Khosoussi: Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As the fidelity of metadata increases, the similarity score becomes more effective in identifying true loop closures. However, this typically comes at the cost of increased data transmission during metadata exchange. In this paper we do not take into account the cost of forming the exchange graph which is inevitable for optimal data exchange [10].

  2. 2.

    Selecting a vertex is equivalent to broadcasting the corresponding observation; see Fig. 1b.

  3. 3.

    This is a reasonable approximation when, e.g., b is sufficiently large (\(b \ge b_0\)) since \(k/(\varDelta b) - 1/b < {\lfloor k/\varDelta \rfloor }/{b} \le k/( \varDelta b)\) and thus the introduced error in the exponent will be at most \(1/b_0\).

  4. 4.

    Omitted due to space limitation.

  5. 5.

    For KITTI 00 we do not show UPT when using the D-criterion objective, because solving the convex relaxation in this case is too time-consuming.

References

  1. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011). https://doi.org/10.1137/080733991

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlone, L., Karaman, S.: Attention and anticipation in fast visual-inertial navigation. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3886–3893. IEEE (2017)

    Google Scholar 

  3. Choudhary, S., Carlone, L., Nieto, C., Rogers, J., Christensen, H.I., Dellaert, F.: Distributed mapping with privacy and communication constraints: lightweight algorithms and object-based models. Int. J. Rob. Res. 36(12), 1286–1311 (2017). https://doi.org/10.1177/0278364917732640

    Article  Google Scholar 

  4. Cieslewski, T., Scaramuzza, D.: Efficient decentralized visual place recognition using a distributed inverted index. IEEE Rob. Autom. Lett. 2(2), 640–647 (2017)

    Article  Google Scholar 

  5. Cieslewski, T., Choudhary, S., Scaramuzza, D.: Data-efficient decentralized visual SLAM. CoRR, abs/1710.05772 (2017)

    Google Scholar 

  6. Davison, A.J.: Active search for real-time vision. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 66–73 (2005)

    Google Scholar 

  7. Fisher, M.L , Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions—ii. In: Polyhedral Combinatorics, pp. 73–87. Springer, Heidelberg (1978)

    Google Scholar 

  8. Gálvez-López, D., Tardós, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Rob. 28(5), 1188–1197 (2012). https://doi.org/10.1109/TRO.2012.2197158. ISSN 1552-3098

    Article  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  10. Giamou, M., Khosoussi, K., How, J.P.: Talk resource-efficiently to me: optimal communication planning for distributed loop closure detection. In: IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  11. Heinly, J., Schönberger, J.L., Dunn, E., Frahm, J.M.: Reconstructing the World* in Six Days *(as captured by the yahoo 100 million image dataset). In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  12. Ila, V., Porta, J.M., Andrade-Cetto, J.: Information-based compact pose SLAM. IEEE Trans. Rob. 26(1), 78–93 (2010)

    Article  Google Scholar 

  13. Joshi, S., Boyd, S.: Sensor selection via convex optimization. IEEE Trans. Signal Process. 57(2), 451–462 (2009)

    Article  MathSciNet  Google Scholar 

  14. Khosoussi, K., Sukhatme, G.S., Huang, S., Gamini, D.: A graph-theoretic approach. In: International Workshop on the Algorithmic Foundations of Robotics, Designing sparse reliable pose-graph SLAM (2016)

    Google Scholar 

  15. Khosoussi, K., Giamou, M., Sukhatme, G.S., Huang, S., Dissanayake, G., How, J.P.: Reliable graphs for SLAM. Int. J. Rob. Res. (2019). To appear

    Google Scholar 

  16. Krause, A., Golovin, D.: Submodular function maximization. In: Bordeaux, L., Hamadi, Y., Kohli, P. (eds.) Tractability: Practical Approaches to Hard Problems, pp. 71–104. Cambridge University Press, Cambridge (2014). ISBN 9781139177801

    Google Scholar 

  17. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, Philadelphia, PA, USA, pp. 545–554 (2009). Society for Industrial and Applied Mathematics

    Google Scholar 

  18. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g 2 o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613. IEEE (2011)

    Google Scholar 

  19. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2007)

    Google Scholar 

  20. Löfberg, J.: Yalmip : a toolbox for modeling and optimization in matlab. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

    Google Scholar 

  21. Minoux, M.: Accelerated greedy algorithms for maximizing submodular set functions. In: Optimization Techniques, pp. 234–243. Springer, Heidelberg (1978)

    Google Scholar 

  22. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  23. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions–i. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  24. Paull, L., Huang, G., Leonard, J.J.: A unified resource-constrained framework for graph SLAM. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1346–1353. IEEE (2016)

    Google Scholar 

  25. Pukelsheim, F.: Optimal Design of Experiments. SIAM, vol. 50 (1993)

    Google Scholar 

  26. Raguram, R., Tighe, J., Frahm, J.M.: Improved geometric verification for large scale landmark image collections. In: BMVC 2012 - Electronic Proceedings of the British Machine Vision Conference 2012. British Machine Vision Association, BMVA (2012). https://doi.org/10.5244/C.26.77

  27. Shamaiah, M., Banerjee, S., Vikalo, H.: Greedy sensor selection: leveraging submodularity. In: 49th IEEE Conference on Decision and Control (CDC), pp. 2572–2577. IEEE (2010)

    Google Scholar 

  28. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

    Article  MathSciNet  Google Scholar 

  29. Tian, Y., Khosoussi, K., Giamou, M., How, J.P., Kelly, J.: Near-optimal budgeted data exchange for distributed loop closure detection. In: Proceedings of Robotics: Science and Systems, Pittsburgh, USA (2018)

    Google Scholar 

  30. Tian, Y., Khosoussi, K., How, J.P.: Resource-aware algorithms for distributed loop closure detection with provable performance guarantees. arXiv preprint arXiv:1901.05925 (2019)

  31. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3 - a matlab software package for semidefinite programming. Optim. Meth. Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  32. Vandenberghe, L., Boyd, S., Shao-Po, W.: Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19(2), 499–533 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NASA Convergent Aeronautics Solutions project Design Environment for Novel Vertical Lift Vehicles (DELIVER), by ONR under BRC award N000141712072, and by ARL DCIST under Cooperative Agreement Number W911NF-17-2-0181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasra Khosoussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Khosoussi, K., How, J.P. (2020). Resource-Aware Algorithms for Distributed Loop Closure Detection with Provable Performance Guarantees. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_25

Download citation

Publish with us

Policies and ethics