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Abstract. NeuroEvolution (NE) methods are known for applying Evo-
lutionary Computation to the optimisation of Artificial Neural Networks
(ANNSs). Despite aiding non-expert users to design and train ANNs, the
vast majority of NE approaches disregard the knowledge that is gath-
ered when solving other tasks, i.e., evolution starts from scratch for each
problem, ultimately delaying the evolutionary process. To overcome this
drawback, we extend Fast Deep Evolutionary Network Structured Repre-
sentation (Fast-DENSER) to incremental development. We hypothesise
that by transferring the knowledge gained from previous tasks we can
attain superior results and speedup evolution. The results show that
the average performance of the models generated by incremental de-
velopment is statistically superior to the non-incremental average per-
formance. In case the number of evaluations performed by incremental
development is smaller than the performed by non-incremental develop-
ment the attained results are similar in performance, which indicates that
incremental development speeds up evolution. Lastly, the models gener-
ated using incremental development generalise better, and thus, without
further evolution, report a superior performance on unseen problems.

Keywords: Incremental Development, NeuroEvolution, Convolutional
Neural Networks

1 Introduction

Automated Machine Learning (AutoML) is a sub-field of Artificial Intelligence
(AI) that automates with little or no human-intervention the application of Ma-
chine Learning (ML) approaches to the user’s problem, avoiding the need for the
manual tuning of the data pre-processing, the design and extraction of features,
and/or the selection and parameterisation of the most suitable ML model. The
current work focuses on a branch of AutoML: NeuroEvolution (NE) [I]. NE ap-
plies Evolutionary Computation (EC) to search for Artificial Neural Networks
(ANNs), enabling the optimisation of their structure (e.g., number of neurons,
layers, connectivity), and/or learning (i.e., weights, or learning algorithm and its



parameters). In other words, the ultimate goal of NE is to empower non-expert
ML users with the ability to design effective ANNs.

One of the main limitations of NE lies in the fact that the majority of the
methods only address a specific problem, i.e., the ANNs are evolved for one task,
and when there is the need to solve a new problem the entire search procedure is
re-started from scratch. Therefore, the methods do not take advantage of any of
the information available from addressing previous similar tasks. In addition, NE
approaches tend to evolve large populations of individuals that are continuously
optimised throughout a usually large number of generations. The evaluation of
a single ANN is time-consuming, because it often requires the training of the
networks with a defined (or evolved) learning strategy. Consequently, the search
for effective ANNs resorting to NE tends to be slow. This problem is even more
striking when optimising Deep Artificial Neural Networks (DANNS).

In this work we extend Fast Deep Evolutionary Network Structured Rep-
resentation (Fast-DENSER) [2] to incremental development, i.e., we transfer
and re-use the knowledge acquired when optimising DANNs (architectures and
learning strategies) to previous problems, and cumulatively apply it to learn new
classification tasks. The main contributions of this work are the following:

— The extension of the Fast-DENSER framework to incremental development;

— The demonstration that DANNSs evolved by incremental development statis-
tically outperform the canonical approach;

— The indication that incremental development speeds up evolution. When
given the same number of generations, incremental development surpasses
the performance of the evolution from scratch. For the same level of perfor-
mance fewer generations are necessary;

— The evidence that the method works as expected in terms of evolution, i.e.,
knowledge from previously solved problems is introduced in any stage;

— The conclusion that the DANNSs that are evolved by incremental develop-
ment generalise better than those obtained by the non-incremental version.
The performance of the incrementally generated DANNS is superior to their
independent evolution counterparts in previously addressed, and in yet un-
addressed problems.

The remainder of the document is organised as follows. Section [2| surveys
related works in the field of NE applied to DANNSs, and incremental development;
Section [3] details Fast-DENSER; Section [4] introduces the extension of Fast-
DENSER to incremental development; Section 5] presents the experimental setup
and results; and Section [6] draws conclusions and addresses future work.

2 Related Work

NeuroEvolution (NE) approaches are usually grouped according to the target
of evolution, i.e., topology [3/4], learning (i.e., weights, parameters, or learning
policies) [5l6[7], or the simultaneous evolution of the topology and learning [8/9].
Nonetheless, more recent efforts have been put towards the proposal of methods



that deal with the optimisation DANNSs, and thus we feel that it is more intu-
itive to divide them into small-scale [5I8] and large-scale [ZIIOTTIT2IT3] NE. The
current paper focuses on the latter; a complete survey can be found in [I4].

The problem of most of the methods that target the evolution of DANNs
is that, even aided by Graphics Processing Units (GPUs) they tend to take a
lot of time to find effective models. For example, CoDeepNEAT [I0] trains on
100 GPUs, and Real et al. use 450 GPUs for 7 days to perform each run [I5].
Fast-DENSER takes approximately 4.7 days with a single GPU to perform each
run, and that is the reason why we have selected Fast-DENSER  for the current
paper. There are methods that are computationally cheaper, e.g., Lorenzo and
Nalepa [16] take about 120 minutes to obtain results; however, the speedup is
obtained at the cost of the performance of the model.

To speedup evolution some authors have investigated the use of transfer
learning in NE. The main goal of transfer learning is to make use of the knowl-
edge acquired when solving previous tasks to facilitate the resolution of others,
enhancing lifelong learning [I7]. One of the most recurrent ideas is that of using
past knowledge to provide a better start than random seeding (e.g., [I8/19]).

A key problem on transfer (and even multi-task) learning is the represen-
tation. Verbancsics and Stanley [20] demonstrate that transfer learning is most
effective when the representation is the same for the multiple problems that
are to be addressed. That is one of the advantages of using a grammar-based
NE approach such as Fast-DENSER: the grammar nature of the method makes
passing from one task to the next one transparent, and requires no changes to
the individuals’ representation.

Whilst some transfer learning works seek to learn high-level features that
are generalisable across multiple domains (e.g., [21]), our objective is to port
individuals to warm start evolution to another problem, and in theory help to
reach high performing solutions in less time. An example of a similar work, but
where a hand designed network is used is introduced by Ciresan et al. [22], where
there is the transfer of knowledge from Latin digits recognition to uppercase
letters, and from Chinese characters to uppercase Latin letters.

3 Fast-DENSER

Fast-DENSER [2] is an extension of Deep Evolutionary Network Structured
Representation (DENSER) [13]: a general-purpose grammar-based NE approach
for optimising DANNs. DENSER can search for any type of DANN, and the
target of evolution is specified in a Context-Free Grammar (CFG). An example
of a CFG for encoding Convolutional Neural Networks (CNNs) is provided in
Figure 1l The typical structure of CNNs divides the topology into two parts: (i)
layers for feature extraction (convolutional and pooling, lines 1-3), and layers for
classification (fully-connected, line 11). The grammar of Figure [1| explores these
layer types, and also regularisation layers (dropout and batch normalisation, lines
1-3, and 11). Furthermore, the grammar enables the optimisation of the learning
strategy (learning, lines 18-20). The parameters of each evolutionary unit (in the



<features> ::= <convolution> | <convolution> (1)

| <pooling> | <pooling> (2)

| <dropout> | <batch-norm> (3)

<convolution> ::=layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,2,5] (4)
[stride,int,1,1,3] <padding> <activation> <bias> (5)

<batch-norm> ::=layer:batch-norm (6)
<pooling> ::= <pool-type> [kernel-size,int,1,2,5] (7
[stride,int,1,1,3] <padding> (8)

<pool-type> ::=layer:pool-avg | layer:pool-max 9)
<padding> ::= padding:same | padding:valid (10)
<classification> ::= <fully-connected> | <dropout> (11)
<fully-connected> ::= layer:fc <activation> (12)
[num-units,int,1,128,2048 <bias> (13)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (14)
<activation> ::=act:linear | act:relu | act:sigmoid (15)
<bias> ::= bias:True | bias:False (16)
<softmax> ::=layer:fc act:softmax num-units:10 bias:True (17)
<learning> ::= <bp> <early-stop> [batch_size,int,1,50,500] (18)

| <rmsprop> <early-stop> [batch_size,int,1,50,500] (19)

| <adam> <early-stop> [batch_size,int,1,50,500] (20)

<bp> ::=learning:gradient-descent [Ir,float,1,0.0001,0.1] (21)
[momentum,float,1,0.68,0.99] (22)
[decay,float,1,0.000001,0.001] <nesterov> (23)

<nesterov> ::=nesterov:True | nesterov:False (24)
<adam> ::=learning:adam [Ir,float,1,0.0001,0.1] [betal,float,1,0.5,1] (25)
[beta2,float,1,0.5,1] [decay,float,1,0.000001,0.001] (26)

<rmsprop> ::= learning:rmsprop [Ir,float,1,0.0001,0.1] (27)
[tho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (28)

<early-stop> ::= [early_stop,int,1,5,20] (29)

Fig.1: CFG for the optimisation of the topology and learning strategy of CNNs.

current work layers or learning algorithms) are kept in the grammar, and can
be integer (e.g., the filter shape in line 4), float (e.g., the momentum in line
22) or closed choice (e.g., the bias in line 16). The integer and float parameters
are represented by a block with the format: [variable-name, variable-type, num-
values, min-value, max-value].

In addition to the CFG we need to define the macro-structure, that estab-
lishes the search space, and points directly to the grammar production rules. The
macro-structure sets the sequence of evolutionary units that the individuals are
allowed to use, and is encoded as a list of tuples, where each position indicates
the non-terminal symbol (that establishes a one-to-one mapping to the gram-
mar, and is used as starting symbol), and the minimum and maximum number
of expansions for that non-terminal symbol. For example, for CNNs, an example
of a macro-structure is [(features, 1, 10), (classification, 1, 2), (softmax, 1, 1),



<features> <softmax>

outer-level: <features> <features> <classification>

<learning>

<features> <pooling> <pooling-type > <padding>

[{DSGE: 1, [{DSGE: 0, [{DSGE: 1, [{DSGE: 0,
{1 {kernel-size: 4, 1 il

inner-level: stride: 2}]

Fig. 2: Example of the genotype of a candidate solution that encodes a CNN.

Layer type: pooling
Pooling func.: max
«« ———P| Kernel size: 4 x4 | ——P --
Stride: 2 x 2

Padding: same

Fig. 3: Phenotype of the layer specified by the inner-level of Figure

(learning, 1, 1)]. This macro-structure allows for CNNs with between 3 and 13
layers, and where the learning strategy is optimised.

The genotype of the candidate solutions is organised into two levels: (i) the
outer-level encodes the sequence of evolutionary units (with respect to the macro-
structure), and sets the non-terminal symbol that is used as initial symbol for the
grammatical derivation; and (ii) the inner-level corresponds to each outer-level
position and encodes the parameters of a specific evolutionary unit. The inner-
level genotype is similar to the genotype of Dynamic Structured Grammatical
Evolution (DSGE); for more details on DSGE refer to [23]. An example of the
genotype and corresponding phenotype of a candidate solution are represented
in Figures [2] and [3] respectively.

The representation of the candidate solutions in DENSER and Fast-DENSER
is the same. The differences between the two approaches lie in the evolution of the
population and in the evaluation of the candidate solutions. In DENSER, evolu-
tion is conducted as in a standard Genetic Algorithm, where in each generation a
large population of individuals is evaluated and offspring is generated. Contrary,
Fast-DENSER follows a (1+A) Evolutionary Strategy (ES), and therefore in
each generation fewer individuals are evaluated. The results have demonstrated
that Fast-DENSER, with the same individual evaluation scheme, can generate
individuals that have the same quality as those generated by DENSER, in a
fraction of the time. More precisely, there is a speedup of 20x from DENSER
to Fast-DENSER. In addition, Fast-DENSER is extended to enable the gener-
ation of fully-trained DANNSs, i.e., networks that need no further training by
the end of the evolutionary process. To this end, Fast-DENSER evaluates the
individuals for a maximum GPU training time. However, the maximum training
time granted to each individual can grow continuously as required. The networks
that are likely to benefit from longer training cycles are given access to a greater
evaluation time as evolution proceeds.
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Fig. 4: Incremental development Fast-DENSER flow-chart.

4 Incremental Development of Deep Neural Networks

Experiments on previous work have shown that Fast-DENSER, given the same
computational time budget, can obtain results that are superior to those reported
by DENSER. The results are achieved without taking advantage of any of the
knowledge acquired when solving other problems. In this paper we investigate
the impact of building the networks incrementally, i.e., we take into account the
DANNSs that are generated for solving previous related problems, speeding up
evolution, and possibly finding more effective solutions.

The flow-chart that illustrates the extension of Fast-DENSER to incremen-
tal development is depicted in Figure ] It shows how the method proceeds to
address two different tasks A and B. For the first problem, task A, the method
works similarly to Fast-DENSER: an initial population is randomly created and
evolves until the stop criterion is met. The difference occurs when we solve a new
problem, given that we have information on a prior one. For task B, the creation
of the initial population takes into account the best model found for a previous
problem (in this case task A). During evolution the past knowledge can also be
incorporated. This rationale is generalised for more than two problems, i.e.; in



case we later address a task C, we use the knowledge obtained when addressing
tasks A and B. Next, we will discuss how the prior knowledge is introduced in
the initial population, and during evolution.

The initial population is formed by individuals that can be either entirely gen-
erated at random or that can use sets of evolutionary units from past models. The
evolutionary units are transferred taking into account the macro-structure. For
example, considering the macro-structure introduced above for CNN, [(features,
1, 10), (classification, 1, 2), (softmax, 1, 1), (learning, 1, 1)], the initial popula-
tion can contain individuals that (i) have all the layers comprising the feature
extraction, and generate the classification layers at random; (ii) generate at ran-
dom the feature extraction layers, and copy the layers that perform classification
from previous models; (iii) copy only the learning evolutionary unit, and gen-
erate all the remaining ones at random; (iv) generate all evolutionary units at
random, not using any previous knowledge; or (v) any other possible combina-~
tion. It is important to mention that this incremental development approach only
focuses on the evolutionary units, and consequently the weights are not trans-
ferred from previous models. At most we allow the learning strategy (which is
an evolutionary unit) to be ported.

The models generated for solving each of the previously addressed problems
are also important during evolution. The mutations in Fast-DENSER are tailored
for manipulating DANNS: they enable the addition, removal, and/or duplication
of any evolutionary unit, and the perturbation of the integer and/or float values.
The duplication mutation, as the name suggests, replicates a given evolutionary
unit by reference, and thus, any mutation that later affects this evolutionary
unit changes all of its copies. In the incremental development version of Fast-
DENSER the duplication can copy evolutionary units either from the individual
or from any of the best models that were generated for solving previous tasks.

The individuals are evaluated only on the new problem. Therefore, up to the
moment, this method is incremental in the sense that the DANNs for solving
new and unseen problems do not kick off evolution from scratch. The incremental
development does not mean that by the end of evolution the generated models
can solve multiple tasks. However, it is expected that the models that are built
considering previous knowledge generalise better than those that are always
evolved from a random population. That is, we expect the models generated by
incremental development to perform well in other tasks when re-trained.

5 Experimentation

To compare the incremental and non-incremental versions of Fast-DENSER
we consider four computer vision datasets: MNIST, SVHN, Fashion-MNIST,
and CIFAR-10 (summarised in Section . In particular, we conduct experi-
ments for the following setups: (i) MNIST; (ii) SVHN; (iii) Fashion-MNIST; (iv)
CIFAR-10; (v) MNIST — SVHN; (vi) MNIST — SVHN — Fashion-MNIST;
(vii) MNIST — SVHN — CIFAR-10. The symbol — denotes the incremental
build of the model from one task to the next. The setups are chosen according



Dataset ‘Train Set Size‘Test Set Size|Number of Classes| Shape

MNIST 60000 10000 10 28x28x1
SVHN 73257 26032 10 32x32x3
Fashion-MNIST 60000 10000 10 28x28x1
CIFAR-10 50000 10000 10 32x32x3

Table 1: Description of the datasets.

to the relatedness and expected difficulty of the tasks: the MNIST and SVHN
datasets are composed by digits, and then transferred to two different domains,
Fashion-MNIST, and CIFAR-10. The parameters required for the conducted ex-
periments are detailed in Section [5.2] The experimental results are divided into
three sections. First, in Section we analyse the evolutionary performance
when evolving DANNs for MNIST, SVHN, Fashion-MNIST, and CIFAR-10 with
and without incremental development. Second, in Section we investigate the
incremental development of the topologies. Third, in Section [5.5] we analyse
the generalisation ability of the different models. The experimental results are
discussed in Section [5.61

5.1 Datasets

The experiments are conducted in 4 datasets: MNIST, SVHN, Fashion-MNIST,
and CIFAR-10. The characteristics of the datasets are summarised in Table [il
The shape of the instances is formatted as width x height x number of channels;
grayscale images have one channel, and RGB images have three channels. A brief
overview of the dataset instances is provided next.

MNIST [24] — handwritten digits from 0 to 9. The instances are pre-processed:
size-normalized, and centered;

SVHN [25] — digits gathered from real-world images from house numbers in
Google Street View images;

Fashion-MNIST [26] — similar to MNIST, where the images of handwritten
digits are replaced by fashion clothing items: top, trouser, pullover, dress,
coat, sandal, shirt, sneaker, bag, and ankle boot;

CIFAR-10 [27] — real-world pictures of objects that are of one of the following
classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

5.2 Experimental Setup

The experimental parameters are detailed in Table [2l The table is organised
into 4 sections: (i) evolutionary engine — parameters related to Fast-DENSER
(14+))-ES; (ii) dataset — parameters concerned with the dataset partitioning; (iii)
training — parameters associated with the training of the DANNSs; and (iv) data
augmentation — parameters required for the dataset augmentation strategy.
The number of generations is different for each of the datasets. In particular,
we perform 20, 30, 50, and 100 generations for the MNIST, Fashion-MNIST,



Evolutionary Engine Parameter Value
Number of runs 10
Number of generations 20 / 30 / 50 / 100
A 5
Add layer rate 25%
Duplicate layer rate 15%
Remove layer rate 25%
Grammatical mutation rate 15%
Dataset Parameter Value
Evolutionary Validation set 3500 instances
Evolutionary Test set 3500 instances
Evolutionary Train set Remaining instances
Test set Check Table
Training Parameter Value
Training Time 10 min.
Loss Categorical Cross-entropy
Data Augmentation Parameter Value
Padding 4
Random crop 4
Horizontal flipping 50%

Table 2: Experimental parameters.

SVHN, and CIFAR-10 datasets, respectively. The number of generations for
each dataset was set empirically based on previous experiments, and according
to how challenging each problem is expected to be. The grammatical mutation
rate is a DSGE parameter that stands for the probability of changing any of the
grammar expansion possibilities or integer/float parameter values.

The dataset section of Table [2| defines how we partition the train set of each
dataset, i.e., for each run the train set is divided (in a stratified way) into three
independent folds: (i) evolutionary train — used for training the DANNs; (ii)
evolutionary validation — used to perform early stop; and (iii) evolutionary test
— used to measure the fitness of the individual, which is measured using the
accuracy. The test set (that is different from the evolutionary test set) is kept
out of evolution and is used only after the end of the evolutionary search. It
measures how well the models behave beyond the data used during evolution,
and enables the unbiased evaluation of the performance.

The datasets, as discussed in Section have different shapes: MNIST and
Fashion-MNIST are 28x28x1, and SVHN and CIFAR-10 are 32x32x3. To fa-
cilitate the application of the optimised DANNSs to all datasets we reshape the
MNIST and Fashion-MNIST to 32x32x3. The image width and height are re-
sized using the nearest neighbour method, and to pass from one to three channels
we replicate the single channel three times. All the datasets are applied the same
data augmentation strategy: padding, random cropping, horizontal flipping, and
re-scaling to [0, 1]. We do not subtract the mean image nor normalize.



Dataset Evolutionary Accuracy|Test Accuracy

MNIST 98.86 + 0.465 98.80 + 0.298
”””” SVAN | 93.284+0.863 | 93.31 £0.955
MNIST - SVHN 94.01 + 0.891 94.04 + 0.887
~ Fashion | ¢ 92.42 +1.224 | 91.41 + 1.049
MNIST - SVHN - Fashion 93.92 + 0.930 92.96 + 0.742
””” CIFAR-10 | 8718 £1.242 | 86.19 £ 1.672
MNIST - SVHN - CIFAR-10 89.06 + 1.488 88.19 + 1.669

Table 3: Average performance of the optimised DANNSs. The results are averages
of 10 independent runs. Bold marks the highest average performance values.

The networks are trained for an initial maximum GPU time of 10 minutes,
and thus it is important to mention that we are performing each evolutionary
run in a GeForce GTX 1080 Ti GPU. For the experiments conducted on this
paper we use the grammar of Figure and the macro-structure: [(features,
1, 30), (classification, 1, 10), (softmax, 1, 1), (learning, 1, 1)]. The code for
Fast-DENSER can be found in the GitHub repository https://github.com/
fillassuncao/fast-denser3.

5.3 Experimental Results: Incremental Development

We start by comparing the DANNs generated by Fast-DENSER with and with-
out incremental development in terms of performance. The results are sum-
marised in Table [3] We report the evolutionary accuracy (i.e., fitness), and the
test accuracy (i.e., the accuracy of the models on an unseen partition of the
datasets). The results are averages of 10 independent runs. The first conclusion
is that given the same computational time (number of generations), the results
reported by the incremental development are always superior to those of when
evolution starts from scratch. In particular, the performance of MNIST - SVHN
is superior to the performance of SVHN, the performance of MNIST - SVHN
— Fashion is superior to the performance of Fashion, and the performance of
MNIST - SVHN - CIFAR-10 is superior to the performance of CIFAR-10.

To better acknowledge the differences between the fittest DANNs generated
with and without incremental development we use statistical tests. To check
if the samples follow a Normal Distribution we use the Kolmogorov-Smirnov
and Shapiro-Wilk tests, with a = 0.05. The tests reveal that the data does not
follow any distribution and thus the non-parametric Mann-Whitney U test («
= 0.05) is used to perform the comparisons between the setups. The statisti-
cal tests show that the results of MNIST - SVHN - Fashion, and MNIST -
SVHN - CIFAR-10 are statistically superior (in evolution and test) to Fashion
(evolutionary p-value=0.00736, test p-value=0.00278), and CIFAR-10 (evolu-
tionary p-value=0.00804, test p-value=0.01552), respectively. The effect size is
large for all the statistically significant comparisons (r >0.5). The difference be-
tween MNIST - SVHN and SVHN is not statistically significant (evolutionary


https://github.com/fillassuncao/fast-denser3
https://github.com/fillassuncao/fast-denser3

Dataset Evolutionary Accuracy|Test Accuracy
MNIST 99.46 99.12
S SVAN | 9420 | 93.88
MNIST - SVHN 94.80 94.14
~ Fashion | 93.91 | 92.92
MNIST - SVHN - Fashion 94.80 93.92
o CIFAR-10 | 88.74 | 88.14
MNIST - SVHN - CIFAR-10 91.06 89.79

Table 4: Accuracy of the best performing DANN for each of the setups. Bold
marks the highest performance value.

p-value=0.05876, test p-value=0.0536). With only 20 generations the MNIST
setup is the one that attains the highest average accuracy results. This indicates
that it is an easy to solve problem and consequently no much knowledge is ac-
quired from addressing it. This is a well-known fact: a simple fully-connected
network is able to attain good performances in the MNIST dataset.

The above results prove that incremental development, given the same num-
ber of generations, designs DANNSs that outperform those generated without in-
cremental development. On the other hand, what happens when, for each setup,
we only let evolution to be conducted for a smaller amount of generations, so
that the cumulative number of generations is not superior to that of when evo-
lution is conducted from scratch? The cumulative number of generations is the
sum of the number of generations of each incremental step. For example, for the
MNIST - SVHN, the cumulative number of generations is 70 (20 4 50). In this
scenario we consider 30, 0, and 30 generations for the MNIST - SVHN, MNIST
- SVHN - Fashion, and MNIST - SVHN - CIFAR-10 setups, respectively. The
average evolutionary performance of the 10 fittest networks slightly decreases
to 93.69 + 0.912, 92.91 + 1.15, and 87.13 £ 2.225, respectively for the MNIST
- SVHN, MNIST - SVHN - Fashion, and MNIST -» SVHN - CIFAR-10 se-
tups. With these results there is no statistical difference for any of the setups,
i.e., with incremental development, given a cumulative search time that equals
the search time from scratch, we are able to generate DANNSs that report the
same performance as those optimised without incremental development for more
generations. In other words, the use of previous knowledge speeds up evolution.

In addition to analysing the average performance over the 10 evolutionary
runs we also focus on the overall best found DANN, i.e., the fittest DANN among
the conducted runs. This analysis is important considering that in a real-world
scenario by the end of evolution what really interests the user is the best found
model, which is the one to potentially be deployed live. To avoid an unbiased
choice of the best model for each dataset, the decision is taken only with regard
to the evolutionary performance. The results are reported in Table |4, and once
again show that the best results are obtained by incremental development. The
most striking result is the one of CIFAR-10, where the difference introduced by
incremental development is the highest.
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Fig. 5: Overview of the evolution on the incremental development setup MNIST
- SVHN - CIFAR-10. We provide a snapshot of the feature-layers of the best
individual on the 1st, 25th, 50th, 75th, and 100th generations. For space con-
straints we focus on the feature extraction layers: Convolutional (C), Pooling
(P), Batch-Normalization (B), and Dropout (D).

5.4 Experimental Results: Topology Analysis

To analyse the behaviour of incremental development from a structural point
of view we inspect the topology of the best networks as evolution proceeds.
Figure 5] shows the evolution of the structure of the networks on the setup
MNIST -» SVHN - CIFAR-10. Because of space constraints we select the setup
where more generations were performed, and present the snapshots of the run
that generates the DANN with the median fitness value, i.e., we order the runs
according to the fitness of the best generated DANN and select the 6th run.
We choose the median run to avoid a biased selection over the worst or best
results. We focus only on the feature extraction layers. The figure’s goal is to
illustrate the exploration of knowledge incorporation, and thus the parameters
of the layers are omitted.

The figure makes it evident that the amount of layers that come from pre-
viously addressed tasks without any change diminishes as evolution proceeds.
That is the expected behaviour: in the initial generation the fittest DANN re-
uses all layers from the best network generated to address the SVHN, and across
generations these layers are adapted to tackle the CIFAR-10 (e.g., convolutional
in generation 75). During evolution new layers are also randomly created (e.g.,
batch-normalization in generation 50), and others removed (e.g., dropout in gen-
eration 100). Similarly to the the non-incremental approach, new random layers
can be added, but in addition, in the incremental development strategy we can
also add layers that come from the previously solved tasks (e.g., convolutional
layer that is transferred from the MNIST in generation 50).

The snapshots prove that incremental development is able to generate better
results based on the re-use of evolutionary units that aid solving previous prob-
lems. The evolutionary units are not only incorporated in the generation of the



initial population, but also during evolution. We also inspect the evolutionary
results of other setups and the conclusions are inline with the reported.

5.5 Experimental Results: Generalisation of the Models

With the objective of studying the generalisation ability of the generated mod-
els we measure their performance on all the considered datasets. For example,
we take the best generated solutions for the MNIST dataset and apply them
to the SVHN, Fashion and CIFAR-10 datasets without further evolutionary op-
timisation. The networks are re-trained on the target datasets with the same
topology and learning strategy that is optimised for the source task. Table
summarises the test results for all the setups. The values in bold mark the best
generalisation performance, i.e., the best performance of the setup (row) that
has not yet seen the dataset (column), e.g., for the CIFAR-10 dataset (last col-
umn), except for the setups that specifically target this dataset (CIFAR-10, and
MNIST-SVHN-CIFAR-10), the setup that attains the highest performance is
MNIST-SVHN-Fashion, and thus this is the setup that is marked in bold.

The analysis of the results shows that incremental development always gen-
erates better results, even for tasks that have not been addressed previously. To
better understand the differences we perform a statistical analysis, and compare
the performances reported by the non-incremental and incremental approaches.
Therefore we compare the SVHN and MNIST-SVHN setups on the MNIST,
Fashion, and CIFAR-10 datasets, and we do similarly with the remaining pairs:
Fashion vs. MNIST-SVHN-Fashion, and CIFAR-10 vs. MNIST-SVHN-CIFAR-
10. The same conditions of the above statistical comparison are applied. The sta-
tistical tests reveal that there are only significant differences between the Fash-
ion, and MNIST-SVHN-Fashion setups, with p-values of 0.02574, and 0.01732,
respectively for the SVHN and CIFAR-10 datasets (the effect size is large). The
direct comparison for the dataset used for evolution (in this case Fashion) was
performed above and revealed a statistical significance in favour of incremental
development for the setups that include two incremental development steps.

In case we order the datasets by difficulty, given by the non-incremental test
performance on each dataset, we have MNIST, SVHN, Fashion, and CIFAR-10,
where the leftmost is the easiest one, and the rightmost is the most challenging.
From these results we hypothesise that superior generalisation performances are
obtained by incremental development, when passing from more simple to more
challenging datasets. That is the reason why there is no statistical difference
in the CIFAR-10 vs. MNIST-SVHN-CIFAR-10 setups: the CIFAR-10 is per-se
more challenging to solve than the remaining ones, and therefore, as already
noticed in a previous article [I3], the DANNs generated for addressing CIFAR-
10 tend to be able to solve other easier problems. The remarkable aspect of
incremental development is when a DANN optimised for Fashion is able to get
better results on the CIFAR-10, compared to when the DANNS for Fashion are
not evolved in an incremental fashion.



MNIST SVHN Fashion CIFAR-10

MNIST 08.8040.298 | 71.31£29.60 | 90.17+1.842 | 63.63+£23.29
””” SVHN " [ 96.8745.426 | 93.314-0.955 | 91.60+1.289 | 78.4947.899
MNIST-SVHN 08.934-0.266 | 94.04+0.887 | 91.83+1.312 | 82.58+2.414
"7 7 7 7 TFashion [ 92.73+16.75 | 89.16+3.551 | 91.41+£1.049 | 77.32+4.893
MNIST-SVHN-Fashion | 98.89+40.273 |92.48+2.167| 92.9640.742 |83.47+2.294
””” CIFAR-10 [ 99.06+0.039 | 90.1849.282 | 92.91+0.479 | 86.19+1.672
MNIST-SVHN—-CIFAR-10(99.11-+0.071| 90.0845.924 |93.16+0.3328| 88.19+1.669

Table 5: Performance of the evolved DANNs when applied to other datasets.
The results are averages of 10 independent runs, where each DANN is trained 5
times. The setups are the table rows, and the datasets the columns.

5.6 Discussion

The results presented in the previous sections compare in terms of performance,
topology, and generalisation ability the search conducted by non-incremental
and incremental development. The evolutionary results show that given the same
search time the DANNSs obtained by incremental development statistically out-
perform the non-incremental counterparts. On the other hand, the incremental
strategy speeds up evolution, and given the same cumulative search time reports
results that match the non-incremental performances.

The speedup in evolution is facilitated by the warm-start of incremental de-
velopment, and possibility to still incorporate knowledge from previous tasks by
mutation as generations proceed. We show an example of this by representing
several snapshots of a network across generations. In particular for the selected
run of the MNIST-SVHN-CIFAR-10 setup, on the first generation the best
individual replicates all the layers from the MNIST-SVHN setup, which are
continuously modified and adapted to the CIFAR-10. During evolution the pa-
rameters of the layers that are copied from the previous setup are changed, new
layers (random, and from previous setups) are added, and others removed. That
is, the behaviour of the incremental development evolution is the expected.

Finally, we analyse the generalisation ability of the generated DANNs. With-
out further evolution, i.e., with the same topology and learning strategy obtained
when optimising a DANN for a specific task, we re-train the DANNs on the
remaining datasets. The results show that, on average, the incremental develop-
ment results are superior to the non-incremental results. Moreover, the results
are statistically significant when the generated DANNSs are applied to a more
difficult task than that where they were generated. This indicates that incre-
mental development helps in learning increasingly more challenging tasks, and
that there are not major differences when performing the opposite.

6 Conclusions and Future Work

Motivated by the difficulty and burden in the design of DANNs we investigate
how to incorporate past knowledge to aid evolution. In particular, we extend



Fast-DENSER — a general-purpose grammar-based NE framework — to take ad-
vantage of the evolutionary units acquired when optimising DANNS for previous
tasks. This novel incremental developmental approach enables the incorporation
of knowledge from any of the previously addressed tasks in any stage of evolu-
tion: both during the generation of the initial population, and by the application
of mutations, as the generations proceed.

The results prove that incremental development improves the search per-
formed by Fast-DENSER enabling it to obtain statistically superior results.
Additionally, incremental development speeds up evolution, being able to ob-
tain the same results as non-incremental evolution given the same cumulative
search time, i.e., less generations are used for the target dataset. In addition,
the DANNSs obtained by the end of evolution generalise better when we use in-
cremental development in the search: the networks designed for easy problems
perform better in more challenging and yet unseen tasks.

The future work will target three different directions: (i) apply the incremen-
tal development methodology to a wider set of tasks and domains; (ii) extend
the approach to modular evolution; and (iii) seek ways to transfer not only the
evolutionary unit but also the weights (in case the evolutionary units are layers).
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