Skip to main content

Muscle Fatigue Monitoring: Using HD-sEMG Techniques

  • Conference paper
  • First Online:
Human Interaction, Emerging Technologies and Future Applications II (IHIET 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1152))

  • 2106 Accesses

Abstract

This study used EMG coherence to investigate the correlation between muscle fatigue and beta-band energy after the dynamic biceps brachii contraction. HD-sEMG signals were acquired in experiment. 9 healthy subjects participated in the muscle contraction task (from non-fatigue to fatigue), Each participant was asked to perform two trails of experiments and exert their max-muscular strength in each trial. The result shows a significant correlation [p = 0.0058 < 0.01] between fatigue and energy in beta-band.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lovell, D.I., Bousson, M., McLellan, C.: The use of performance tests for the physiological monitoring of training in combat sports: a case study of a world ranked mixed martial arts fighter. J. Athl. Enhanc. 02(01), 2–6 (2013)

    Article  Google Scholar 

  2. Knicker, A.J., Renshaw, I., Oldham, A.R.H., Cairns, S.P.: Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med. 41, 22 (2011)

    Article  Google Scholar 

  3. McManus, L., Hu, X., Rymer, W.Z., Suresh, N.L., Lowery, M.M.: Muscle fatigue increases beta-band coherence between the firing times of simultaneously active motor units in the first dorsal interosseous muscle. J. Neurophysiol. 115(6), 2830–2839 (2016)

    Article  Google Scholar 

  4. Wang, L., Lu, A., Zhang, S., Niu, W., Zheng, F., Gong, M.: Fatigue-related electromyographic coherence and phase synchronization analysis between antagonistic elbow muscles. Exp. Brain Res. 233(3), 971–982 (2015)

    Article  Google Scholar 

  5. Merletti, R., Holobar, A., Farina, D.: Two dimensional high density surface EMG (HD-EMG) technology and applications, p. 5 (2008)

    Google Scholar 

  6. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  7. Negro, F., Muceli, S., Castronovo, A.M., Holobar, A., Farina, D.: Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation. J. Neural Eng. 13(2), 026027 (2016)

    Article  Google Scholar 

  8. Buchthal, F., Schmalbruch, H.: Motor unit of mammalian muscle. Physiol. Rev. 60(1), 90–142 (1980)

    Article  Google Scholar 

  9. Erimaki, S., Christakos, C.N.: Coherent motor unit rhythms in the 6–10 Hz range during time-varying voluntary muscle contractions: neural mechanism and relation to rhythmical motor control. J. Neurophysiol. 99(2), 473–483 (2008)

    Article  Google Scholar 

  10. Lowery, M.M., Myers, L.J., Erim, Z.: Coherence between motor unit discharges in response to shared neural inputs. J. Neurosci. Methods 163(2), 384–391 (2007)

    Article  Google Scholar 

  11. Kattla, S., Lowery, M.M.: Fatigue related changes in electromyographic coherence between synergistic hand muscles. Exp. Brain Res. 202, 11 (2010)

    Article  Google Scholar 

  12. McManus, L., Hu, X., Rymer, W.Z., Lowery, M.M., Suresh, N.L.: Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle. J. Neurophysiol. 113(9), 3186–3196 (2015)

    Article  Google Scholar 

  13. Dai, C., Suresh, N.L., Suresh, A.K., Rymer, W.Z., Hu, X.: Altered motor unit discharge coherence in paretic muscles of stroke survivors. Front. Neurol. 8, 202 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiyu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Zhou, M. (2020). Muscle Fatigue Monitoring: Using HD-sEMG Techniques. In: Ahram, T., Taiar, R., Gremeaux-Bader, V., Aminian, K. (eds) Human Interaction, Emerging Technologies and Future Applications II. IHIET 2020. Advances in Intelligent Systems and Computing, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-44267-5_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44267-5_83

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44266-8

  • Online ISBN: 978-3-030-44267-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics