Skip to main content

Deep Learning Based Kinematic Modeling of 3-RRR Parallel Manipulator

  • Conference paper
  • First Online:
Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020) (AICV 2020)

Abstract

This paper presents a novel low cost design for a 3-RRR Planar Parallel Manipulator (PPM). These manipulators proved their superiority over serial manipulators due to their speed, precision and smaller work space where the work space area is accounted for in the design to ensure that the robot is performing its task in a smooth and simple way without getting into any singularity points. The challenge with PPM is to obtain the kinematic constraint equations of the manipulator due to their complex non-linear behavior. Screw theory is a new approach that is used to compute the direct and inverse kinematics based on the relation between each link and its’ predecessor. The design is then inserted into ADAMS to study its dynamical behavior and to obtain a data set that would be used in analyzing the system in MATLAB. A Neuro-Fuzzy Inference System (NFIS) model was constructed in order to predict the end-effector position inside the work space and it is tuned with Particle swarm optimization (PSO) and Genetic algorithm (GA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angel, L., Pérez, M., Díaz-Quintero, C., Mendoza, C.: Adams/matlab co-simulation: dynamic systems analysis and control tool. In: Applied Mechanics and Materials, vol. 232, pp. 527–531 (2012)

    Google Scholar 

  2. Arora, J.: Genetic algorithms for optimum design. In: Introduction to Optimum Design, pp. 643–655 (2004)

    Google Scholar 

  3. Azar, A.T., Zhu, Q., Khamis, A., Zhao, D.: Control design approaches for parallel robot manipulators: a review. Int. J. Model. Identif. Control 28(3), 199–211 (2017)

    Article  Google Scholar 

  4. Azar, A.T., Aly, A.M., Sayed, A.S., Radwan, M.E., Ammar, H.H.: Neuro-fuzzy system for 3-DOF parallel robot manipulator. In: 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES), vol. 1, pp. 1–5 (2019)

    Google Scholar 

  5. Azar, A.T., Ali, N., Makarem, S., Diab, M.K., Ammar, H.H.: Design and implementation of a ball and beam PID control system based on metaheuristic techniques. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 313–325. Springer, Cham (2020)

    Google Scholar 

  6. Azar, A.T., Sayed, A.S., Shahin, A.S., Elkholy, H.A., Ammar, H.H.: PID controller for 2-DOFS twin rotor MIMO system tuned with particle swarm optimization. In: Hassanien, A.E., Shaalan, K., Tolba, M.F. (eds.) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 229–242. Springer, Cham (2020)

    Google Scholar 

  7. Boudreau, R., Nokleby, S.: Force optimization of kinematically-redundant planar parallel manipulators following a desired trajectory. Mech. Mach. Theory 56, 138–155 (2012)

    Article  Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley/Longman Publishing Co., Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  9. Gough, V.: Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. Auto Div. Inst. Mech. Eng. 171, 392–395 (1957)

    Google Scholar 

  10. Hamdoun, O., El Bakkali, L., Baghli, F.Z.: Analysis and optimum kinematic design of a parallel robot. Procedia Eng. 181, 214–220 (2017)

    Article  Google Scholar 

  11. Kubela, T., Pochyly, A., Singule, V.: Advanced tools for multi-body simulation and design of control structures applied in robotic system development. Solid State Phenom. 164, 387–391 (2010)

    Article  Google Scholar 

  12. Kucuk, S.: Dexterous workspace optimization for a new parallel robot manipulator. J. Mech. Robot. 10(6), 8 p. (2018). Article no. 064503

    Google Scholar 

  13. Liu, C., Cao, G., Qu, Y.: Safety analysis via forward kinematics of delta parallel robot using machine learning. Saf. Sci. 117, 243–249 (2019)

    Article  Google Scholar 

  14. Luces, M., Mills, J.K., Benhabib, B.: A review of redundant parallel kinematic mechanisms. J. Intell. Robot. Syst. 86(2), 175–198 (2017)

    Article  Google Scholar 

  15. Merlet, J.: Parallel Robots, vol. 74. Springer, Sophia-Antipolis (2012)

    MATH  Google Scholar 

  16. Mitchell, M., Toroczkai, Z.: Complexity: a guided tour. Phys. Today 63, 47 (2010)

    Google Scholar 

  17. MĂĽller, A.: Redundant actuation of parallel manipulators. In: Parallel Manipulators, Towards New Applications. IntechOpen (2008)

    Google Scholar 

  18. Pierrot, F., Reynaud, C., Fournier, A.: Delta: a simple and efficient parallel robot. Robotica 8(2), 105–109 (1990)

    Article  Google Scholar 

  19. Seibel, A., Schulz, S., Schlattmann, J.: On the direct kinematics problem of parallel mechanisms. J. Robot. 2018, 1–9 (2018). Article ID 2412608. https://doi.org/10.1155/2018/2412608

  20. Shi, H., Su, H.J.: An analytical model for calculating the workspace of a flexure hexapod nanopositioner. J. Mech. Robot. 5(4), 041,009 (2013)

    Article  Google Scholar 

  21. Shi, H., Su, H.J., Dagalakis, N.: A stiffness model for control and analysis of a mems hexapod nanopositioner. Mech. Mach. Theory 80, 246–264 (2014)

    Article  Google Scholar 

  22. Talaslioglu, T.: Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology. Front. Struct. Civ. Eng. 13(4), 863–889 (2019)

    Article  Google Scholar 

  23. Xie, F., Liu, X.J.: Design and development of a high-speed and high-rotation robot with four identical arms and a single platform. J. Mech. Robot. 7(4), 041,015 (2015)

    Article  Google Scholar 

  24. Xu, Q., Li, Y.: A 3-PRS parallel manipulator control based on neural network. In: Liu, D., Fei, S., Hou, Z.G., Zhang, H., Sun, C. (eds.) Advances in Neural Networks - ISNN 2007, pp. 757–766. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Yang, X.S.: Optimization and Metaheuristic Algorithms in Engineering, pp 1–23 (2013)

    Google Scholar 

  26. Zhang, Z., Shao, Z., Wang, L.: Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion. Mech. Mach. Theory 130, 86–108 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sayed, A.S., Azar, A.T., Ibrahim, Z.F., Ibrahim, H.A., Mohamed, N.A., Ammar, H.H. (2020). Deep Learning Based Kinematic Modeling of 3-RRR Parallel Manipulator. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_29

Download citation

Publish with us

Policies and ethics