Skip to main content

Abstract

One of the developing fields of the present times is educational data mining that pertains to developing methods that help in examining various kinds of data obtained from the educational field. A vital part is played by data mining in the education field, particularly when behavior is being assessed in an online learning setting. This is because data mining is capable of analyzing and identifying the hidden information regarding the data itself, which is very difficult and takes up a lot of time if performed manually. This review has the objective of examining the way data mining was handled by researchers in the past and the most recent trends on data mining in educational research, as well as to evaluate the likelihood of employing machine learning in the field of education. The various limitations inherent in the current research are examined and recommendations are made for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saa, A.A., Al-Emran, M., Shaalan, K.: Factors affecting students’ performance in higher education: a systematic review of predictive data mining techniques. Technol. Knowl. Learn. 24, 567–598 (2019)

    Google Scholar 

  2. Salloum, S.A., AlHamad, A.Q., Al-Emran, M., Shaalan, K.: A survey of Arabic text mining, vol. 740 (2018)

    Google Scholar 

  3. Mhamdi, C., Al-Emran, M., Salloum, S.A.: Text mining and analytics: a case study from news channels posts on Facebook, vol. 740 (2018)

    Google Scholar 

  4. Hassanien, A.E., Darwish, A., El-Askary, H.: Machine Learning and Data Mining in Aerospace Technology. Springer, Cham (2020)

    Google Scholar 

  5. Hassanien, A.E.: Machine Learning Paradigms: Theory and Application. Springer, Cham (2019)

    Google Scholar 

  6. Ismail, F.H., Hassanien, A.E.: Extracting valuable associations among textural features of medical images. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 605–608 (2018)

    Google Scholar 

  7. Ahuja, R., Jha, A., Maurya, R., Srivastava, R.: Analysis of educational data mining. In: Harmony Search and Nature Inspired Optimization Algorithms, pp. 897–907. Springer (2019)

    Google Scholar 

  8. Sarra, A., Fontanella, L., Di Zio, S.: Identifying students at risk of academic failure within the educational data mining framework. Soc. Indic. Res. 146(1–2), 41–60 (2019)

    Google Scholar 

  9. Mohamad, S.K., Tasir, Z.: Educational data mining: a review. Procedia-Soc. Behav. Sci. 97, 320–324 (2013)

    Google Scholar 

  10. Baker, R.S.J.D., Yacef, K.: The state of educational data mining in 2009: a review and future visions. JEDM: J. Educ. Data Min. 1(1), 3–17 (2009)

    Google Scholar 

  11. Romero, C., Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33(1), 135–146 (2007)

    Google Scholar 

  12. Salloum, S.A., Alhamad, A.Q.M., Al-Emran, M., Monem, A.A., Shaalan, K.: Exploring students’ acceptance of E-learning through the development of a comprehensive technology acceptance model. IEEE Access 7, 128445–128462 (2019)

    Google Scholar 

  13. Alshurideh, M., Salloum, S.A., Al Kurdi, B., Al-Emran, M.: Factors affecting the social networks acceptance: an empirical study using PLS-SEM approach. In: 8th International Conference on Software and Computer Applications (2019)

    Google Scholar 

  14. Alshurideh, M.T., Salloum, S.A., Al Kurdi, B., Monem, A.A., Shaalan, K.: Understanding the quality determinants that influence the intention to use the mobile learning platforms: a practical study. Int. J. Interact. Mob. Technol. 13(11), 157–183 (2019)

    Google Scholar 

  15. Mitrofanova, Y.S., Sherstobitova, A.A., Filippova, O.A.: Modeling smart learning processes based on educational data mining tools. In: Smart Education and e-Learning 2019, pp. 561–571. Springer (2019)

    Google Scholar 

  16. Menaka, M.S., Kesavaraj, G.: A study on e-learning system to analyse student performance using data mining (2019)

    Google Scholar 

  17. Cerezo, R., Bogarín, A., Esteban, M., Romero, C.: Process mining for self-regulated learning assessment in e-learning. J. Comput. High. Educ. 32, 74–88 (2020)

    Google Scholar 

  18. Keskin, S., Şahin, M., Yurdugül, H.: Online learners’ navigational patterns based on data mining in terms of learning achievement. In: Learning Technologies for Transforming Large-Scale Teaching, Learning, and Assessment, pp. 105–121. Springer (2019)

    Google Scholar 

  19. Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., Van Erven, G.: Educational data mining: predictive analysis of academic performance of public school students in the capital of Brazil. J. Bus. Res. (2018)

    Google Scholar 

  20. Salloum, S.A., Al-Emran, M., Monem, A.A., Shaalan, K.: Using text mining techniques for extracting information from research articles. In: Studies in Computational Intelligence, vol. 740. Springer (2018)

    Google Scholar 

  21. Salloum, S.A., Al-Emran, M., Abdallah, S., Shaalan, K.: Analyzing the Arab gulf newspapers using text mining techniques. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 396–405 (2017)

    Google Scholar 

  22. Salloum, S.A., Al-Emran, M., Shaalan, K.: Mining social media text: extracting knowledge from Facebook. Int. J. Comput. Digit. Syst. 6(2), 73–81 (2017)

    Google Scholar 

  23. Salloum, S.A., Mhamdi, C., Al-Emran, M., Shaalan, K.: Analysis and classification of Arabic newspapers’ Facebook pages using text mining techniques. Int. J. Inf. Technol. Lang. Stud. 1(2), 8–17 (2017)

    Google Scholar 

  24. Cummins, M.R.: Nonhypothesis-driven research: data mining and knowledge discovery. In: Clinical Research Informatics, pp. 341–356. Springer (2019)

    Google Scholar 

  25. Salloum, S.A., Al-Emran, M., Monem, A.A., Shaalan, K.: A survey of text mining in social media: Facebook and Twitter perspectives. Adv. Sci. Technol. Eng. Syst. J 2(1), 127–133 (2017)

    Google Scholar 

  26. Alomari, K.M., AlHamad, A.Q., Salloum, S.: Prediction of the digital game rating systems based on the ESRB (2019)

    Google Scholar 

  27. Arunachalam, A.S., Velmurugan, T.: Analyzing student performance using evolutionary artificial neural network algorithm. Int. J. Eng. Technol. 7(2.26), 67–73 (2018)

    Google Scholar 

  28. Romero, C., Ventura, S., García, E.: Data mining in course management systems: moodle case study and tutorial. Comput. Educ. 51(1), 368–384 (2008)

    Google Scholar 

  29. Sachin, R.B., Vijay, M.S.: A survey and future vision of data mining in educational field. In: 2012 Second International Conference on Advanced Computing & Communication Technologies, pp. 96–100 (2012)

    Google Scholar 

  30. Salloum, S.A., Shaalan, K.: Factors affecting students’ acceptance of e-learning system in higher education using UTAUT and structural equation modeling approaches. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 469–480 (2018)

    Google Scholar 

  31. Salloum, S.A., Al-Emran, M., Habes, M., Alghizzawi, M., Ghani, M.A., Shaalan, K.: Understanding the impact of social media practices on e-learning systems acceptance. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 360–369 (2019)

    Google Scholar 

  32. Salloum, S.A., Mhamdi, C., Al Kurdi, B., Shaalan, K.: Factors affecting the adoption and meaningful use of social media: a structural equation modeling approach. Int. J. Inf. Technol. Lang. Stud. 2(3), 96–109 (2018)

    Google Scholar 

  33. Salloum, S.A., Maqableh, W., Mhamdi, C., Al Kurdi, B., Shaalan, K.: Studying the social media adoption by university students in the United Arab Emirates. Int. J. Inf. Technol. Lang. Stud. 2(3), 83–95 (2018)

    Google Scholar 

  34. Salloum, S.A.S., Shaalan, K.: Investigating students’ acceptance of e-learning system in higher educational environments in the UAE: applying the extended technology acceptance model (TAM). The British University in Dubai (2018)

    Google Scholar 

  35. Habes, M., Alghizzawi, M., Khalaf, R., Salloum, S.A., Ghani, M.A.: The relationship between social media and academic performance: Facebook perspective. Int. J. Inf. Technol. Lang. Stud. 2(1), 12–18 (2018)

    Google Scholar 

  36. Salloum, S.A., Al-Emran, M., Shaalan, K., Tarhini, A.: Factors affecting the E-learning acceptance: a case study from UAE. Educ. Inf. Technol. 24, 509–530 (2019)

    Google Scholar 

  37. Al-Emran, M., Salloum, S.A.: Students’ attitudes towards the use of mobile technologies in e-evaluation. Int. J. Interact. Mob. Technol. 11(5), 195–202 (2017)

    Google Scholar 

  38. Kabakchieva, D.: Predicting student performance by using data mining methods for classification. Cybern. Inf. Technol. 13(1), 61–72 (2013)

    MathSciNet  Google Scholar 

  39. Durairaj, M., Vijitha, C.: Educational data mining for prediction of student performance using clustering algorithms. Int. J. Comput. Sci. Inf. Technol. 5(4), 5987–5991 (2014)

    Google Scholar 

  40. Francis, B.K., Babu, S.S.: Predicting academic performance of students using a hybrid data mining approach. J. Med. Syst. 43(6), 162 (2019)

    Google Scholar 

  41. Akram, A., et al.: Predicting students’ academic procrastination in blended learning course using homework submission data. IEEE Access 7, 102487–102498 (2019)

    Google Scholar 

  42. Rojanavasu, P.: Educational data analytics using association rule mining and classification. In: 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), pp. 142–145 (2019)

    Google Scholar 

  43. Sana, B., Siddiqui, I.F., Arain, Q.A.: Analyzing students’ academic performance through educational data mining. 3c Tecnol. glosas innovación Apl. a la pyme 8(29), 402–421 (2019)

    Google Scholar 

  44. Bharara, S., Sabitha, S., Bansal, A.: Application of learning analytics using clustering data Mining for Students’ disposition analysis. Educ. Inf. Technol. 23(2), 957–984 (2018)

    Google Scholar 

  45. Nurhayati, O.D., Bachri, O.S., Supriyanto, A., Hasbullah, M.: Graduation prediction system using artificial neural network. Int. J. Mech. Eng. Technol. 9(7), 1051–1057 (2018)

    Google Scholar 

  46. Rao, K.S., Swapna, N., Kumar, P.P.: Educational data mining for student placement prediction using machine learning algorithms. Int. J. Eng. Technol. Sci. 7(1.2), 43–46 (2018)

    Google Scholar 

  47. Okubo, F., Yamashita, T., Shimada, A., Ogata, H.: A neural network approach for students’ performance prediction. In: LAK 2017, pp. 598–599 (2017)

    Google Scholar 

  48. Almarabeh, H.: Analysis of students’ performance by using different data mining classifiers. Int. J. Mod. Educ. Comput. Sci. 9(8), 9 (2017)

    Google Scholar 

  49. Alban, M., Mauricio, D.: Neural networks to predict dropout at the universities. Int. J. Mach. Learn. Comput. 9(2), 149–153 (2019)

    Google Scholar 

  50. Feng, J.: Predicting students’ academic performance with decision tree and neural network (2019)

    Google Scholar 

  51. Jie, W., Hai-yan, L., Biao, C., Yuan, Z.: Application of educational data mining on analysis of students’ online learning behavior. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 1011–1015 (2017)

    Google Scholar 

  52. Lara, J.A., Lizcano, D., Martínez, M.A., Pazos, J., Riera, T.: A system for knowledge discovery in e-learning environments within the European Higher Education Area-Application to student data from Open University of Madrid, UDIMA. Comput. Educ. 72, 23–36 (2014)

    Google Scholar 

  53. Chakraborty, B., Chakma, K., Mukherjee, A.: A density-based clustering algorithm and experiments on student dataset with noises using Rough set theory. In: 2016 IEEE International Conference on Engineering and Technology (ICETECH), pp. 431–436 (2016)

    Google Scholar 

  54. Chauhan, N., Shah, K., Karn, D., Dalal, J.: Prediction of student’s performance using machine learning (2019). SSRN 3370802

    Google Scholar 

  55. Pechenizkiy, M., Calders, T., Vasilyeva, E., De Bra, P.: Mining the student assessment data: lessons drawn from a small scale case study. In: Educational Data Mining 2008 (2008)

    Google Scholar 

  56. Shih, Y.-C., Huang, P.-R., Hsu, Y.-C., Chen, S.Y.: A complete understanding of disorientation problems in Web-based learning. Turkish Online J. Educ. Technol. 11(3), 1–13 (2012)

    Google Scholar 

  57. Talavera, L., Gaudioso, E.: Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In: Workshop on Artificial Intelligence in CSCL. 16th European Conference on Artificial Intelligence, pp. 17–23 (2004)

    Google Scholar 

  58. Perera, D., Kay, J., Koprinska, I., Yacef, K., Zaïane, O.R.: Clustering and sequential pattern mining of online collaborative learning data. IEEE Trans. Knowl. Data Eng. 21(6), 759–772 (2008)

    Google Scholar 

  59. Dutt, A., Aghabozrgi, S., Ismail, M.A.B., Mahroeian, H.: Clustering algorithms applied in educational data mining. Int. J. Inf. Electron. Eng. 5(2), 112 (2015)

    Google Scholar 

  60. Bogarín, A., Romero, C., Cerezo, R., Sánchez-Santillán, M.: Clustering for improving educational process mining. In: Proceedings of the Fourth International Conference on Learning Analytics and Knowledge, pp. 11–15 (2014)

    Google Scholar 

  61. Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., Van Erven, G.: Educational data mining: predictive analysis of academic performance of public school students in the capital of Brazil. J. Bus. Res. 94, 335–343 (2019)

    Google Scholar 

  62. Palomo-Duarte, M., Berns, A., Yañez Escolano, A., Dodero, J.-M.: Clustering analysis of game-based learning: worth it for all students? J. Gaming Virtual Worlds 11(1), 45–66 (2019)

    Google Scholar 

  63. Ahmed, A.B.E.D., Elaraby, I.S.: Data mining: a prediction for student’s performance using classification method. World J. Comput. Appl. Technol. 2(2), 43–47 (2014)

    Google Scholar 

  64. Anjewierden, A., Kolloffel, B., Hulshof, C.: Towards educational data mining: using data mining methods for automated chat analysis to understand and support inquiry learning processes (2007)

    Google Scholar 

  65. Adebayo, A.O., Chaubey, M.S.: Data mining classification techniques on the analysis of student’s performance. GSJ 7(4), 45–52 (2019)

    Google Scholar 

  66. Kay, J., Maisonneuve, N., Yacef, K., Zaïane, O.: Mining patterns of events in students’ teamwork data. In: Proceedings of the Workshop on Educational Data Mining at the 8th International Conference on Intelligent Tutoring Systems (ITS 2006), pp. 45–52 (2006)

    Google Scholar 

  67. Tiwari, A.K., Ramakrishna, G., Sharma, L.K., Kashyap, S.K.: Academic performance prediction algorithm based on fuzzy data mining. Int. J. Artif. Intelegence 8(1), 26–32 (2019)

    Google Scholar 

  68. Merceron, A., Yacef, K.: Revisiting interestingness of strong symmetric association rules in educational data. In: Proceedings of the International Workshop on Applying Data Mining in e-Learning, Creete, Greece, pp. 3–12 (2007)

    Google Scholar 

  69. García, E., Romero, C., Ventura, S., Calders, T.: Drawbacks and solutions of applying association rule mining in learning management systems. In: Proceedings of the International Workshop on Applying Data Mining in e-Learning (ADML 2007), Crete, Greece, pp. 13–22 (2007)

    Google Scholar 

  70. Samuel, A.L.: Some studies in machine learning using the game of checkers. II—recent progress. IBM J. Res. Dev. 11(6), 601–617 (1967)

    Google Scholar 

  71. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  72. Kučak, D., Juričić, V., Đambić, G.: Machine learning in education-a survey of current research trends. In: Annals of DAAAM and Proceedings, vol. 29 (2018)

    Google Scholar 

  73. Stahl, F., Jordanov, I.: An overview of the use of neural networks for data mining tasks. Wiley Interdiscip Rev. Data Min. Knowl. Discov. 2(3), 193–208 (2012)

    Google Scholar 

  74. Coelho, O.B., Silveira, I.: Deep learning applied to learning analytics and educational data mining: a systematic literature review. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), vol. 28, no. 1, p. 143 (2017)

    Google Scholar 

  75. Vellido, A., Castro, F., Nebot, A.: Clustering educational data. In: Handbook of Educational Data Mining, pp. 75–92 (2010)

    Google Scholar 

  76. Li, J., Wong, Y., Kankanhalli, M.S.: Multi-stream deep learning framework for automated presentation assessment. In: 2016 IEEE International Symposium on Multimedia (ISM), pp. 222–225 (2016)

    Google Scholar 

  77. Gross, E., Wshah, S., Simmons, I., Skinner, G.: A handwriting recognition system for the classroom. In: Proceedings of the Fifth International Conference on Learning Analytics and Knowledge, pp. 218–222 (2015)

    Google Scholar 

  78. Guo, B., Zhang, R., Xu, G., Shi, C., Yang, L.: Predicting students performance in educational data mining. In: 2015 International Symposium on Educational Technology (ISET), pp. 125–128 (2015)

    Google Scholar 

  79. Tang, S., Peterson, J.C., Pardos, Z.A.: Deep neural networks and how they apply to sequential education data. In: Proceedings of the Third (2016) ACM Conference on Learning @ Scale, pp. 321–324 (2016)

    Google Scholar 

  80. Wang, L., Sy, A., Liu, L., Piech, C.: Deep knowledge tracing on programming exercises. In: Proceedings of the Fourth (2017) ACM Conference on Learning @ Scale, pp. 201–204 (2017)

    Google Scholar 

  81. Craven, M.W., Shavlik, J.W.: Using neural networks for data mining. Futur. Gener. Comput. Syst. 13(2–3), 211–229 (1997)

    Google Scholar 

  82. Anozie, N., Junker, B.W.: Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system (2006)

    Google Scholar 

  83. Khan, I., Al Sadiri, A., Ahmad, A.R., Jabeur, N.: Tracking student performance in introductory programming by means of machine learning. In: 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), pp. 1–6 (2019)

    Google Scholar 

  84. Livieris, I.E., Drakopoulou, K., Tampakas, V.T., Mikropoulos, T.A., Pintelas, P.: Predicting secondary school students’ performance utilizing a semi-supervised learning approach. J. Educ. Comput. Res. 57(2), 448–470 (2019)

    Google Scholar 

  85. Yadav, S.K., Pal, S.: Data mining: a prediction for performance improvement of engineering students using classification, arXiv Prepr. arXiv:1203.3832 (2012)

  86. Yadav, S.K., Bharadwaj, B., Pal, S.: Mining education data to predict student’s retention: a comparative study, arXiv Prepr. arXiv:1203.2987 (2012)

  87. Akinola, O.S., Akinkunmi, B.O., Alo, T.S.: A data mining model for predicting computer programming proficiency of computer science undergraduate students (2012)

    Google Scholar 

  88. Luckin, R., Holmes, W., Griffiths, M., Forcier, L.B.: Intelligence unleashed: an argument for AI in education (2016)

    Google Scholar 

  89. Meseguer-Brocal, G., Cohen-Hadria, A., Peeters, G.: DALI: a large dataset of synchronized audio, lyrics and notes, automatically created using teacher-student machine learning paradigm, arXiv Prepr. arXiv:1906.10606 (2019)

  90. El-Alfy, E.-S.M., Abdel-Aal, R.E.: Construction and analysis of educational tests using abductive machine learning. Comput. Educ. 51(1), 1–16 (2008)

    Google Scholar 

  91. Đambić, G., Krajcar, M., Bele, D.: Machine learning model for early detection of higher education students that need additional attention in introductory programming courses. Int. J. Digit. Technol. Econ. 1(1), 1–11 (2016)

    Google Scholar 

  92. Celar, S., Stojkic, Z., Seremet, Z., Marusic, Z., Zelenika, D.: Classification of test documents based on handwritten student ID’s characteristics. Procedia Eng. 100, 782–790 (2015)

    Google Scholar 

  93. Pechenizkiy, M., Trcka, N., Vasilyeva, E., Van der Aalst, W., De Bra, P.: Process mining online assessment data. In: International Working Group on Educational Data Mining (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said A. Salloum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salloum, S.A., Alshurideh, M., Elnagar, A., Shaalan, K. (2020). Mining in Educational Data: Review and Future Directions. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_9

Download citation

Publish with us

Policies and ethics