Skip to main content

Empirical Mode Decomposition Algorithms for Classification of Single-Channel EEG Manifesting McGurk Effect

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11886))

Included in the following conference series:

  • 658 Accesses

Abstract

Brain state classification using electroencephalography (EEG) finds applications in both clinical and non-clinical contexts, such as detecting sleep states or perceiving illusory effects during multisensory McGurk paradigm, respectively. Existing literature mostly considers recordings of EEG electrodes that cover the entire head. However, for real world applications, wearable devices that encompass just one (or a few) channels are desirable, which make the classification of EEG states even more challenging. With this as background, we applied variants of data driven Empirical Mode Decomposition (EMD) on McGurk EEG, which is an illusory perception of speech when the movement of lips does not match with the audio signal, for classifying whether the perception is affected by the visual cue or not. After applying a common pre-processing pipeline, we explored four EMD based frameworks to extract EEG features, which were classified using Random Forest. Among the four alternatives, the most effective framework decomposes the ensemble average of two classes of EEG into their respective intrinsic mode functions forming the basis on which the trials were projected to obtain features, which on classification resulted in accuracies of 63.66% using single electrode and 75.85% using three electrodes. The frequency band which plays vital role during audio-visual integration was also studied using traditional band pass filters. Of all, Gamma band was found to be the most prominent followed by alpha and beta bands which contemplates findings from previous studies.

A. Banerjee and C. N. Gupta—Both the senior authors spent equal time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGurk, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264(5588), 746 (1976)

    Article  Google Scholar 

  2. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  3. Molla, M., Islam, K., Rahman, M.S., Sumi, A., Banik, P.: Empirical mode decomposition analysis of climate changes with special reference to rainfall data. Discrete Dyn. Nature Soc. 2006 (2006)

    Google Scholar 

  4. Loh, C.-H., Wu, T.-C., Huang, N.E.: Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses. Bull. Seismol. Soc. Am. 91(5), 1339–1357 (2001)

    Article  Google Scholar 

  5. Looney, D., Mandic, D.P.: Multiscale image fusion using complex extensions of EMD. IEEE Trans. Signal Process. 57(4), 1626–1630 (2009)

    Article  MathSciNet  Google Scholar 

  6. Veltcheva, A.D.: Wave and group transformation by a Hilbert spectrum. Coast. Eng. J. 44(4), 283–300 (2002)

    Article  Google Scholar 

  7. Arasteh, A., Moradi, M.H., Janghorbani, A.: A novel method based on empirical mode decomposition for P300-based detection of deception. IEEE Trans. Inf. Forensics Secur. 11(11), 2584–2593 (2016)

    Article  Google Scholar 

  8. Kumar, G.V., Halder, T., Jaiswal, A.K., Mukherjee, A., Roy, D., Banerjee, A.: Large scale functional brain networks underlying temporal integration of audiovisual speech perception: an EEG study. Front. Psychol. 7, 1558 (2016)

    Google Scholar 

  9. Hocking, J., Price, C.J.: The role of the posterior superior temporal sulcus in audiovisual processing. Cereb. Cortex 18(10), 2439–2449 (2008)

    Article  Google Scholar 

  10. Kumar, V.G., Dutta, S., Talwar, S., Roy, D., Banerjee, A.: Neurodynamic explanation of inter-individual and inter-trial variability in cross-modal perception. bioRxiv, p. 286609 (2018)

    Google Scholar 

  11. Teplan, M., et al.: Fundamentals of EEG measurement. Meas. Sci. Rev. 2(2), 1–11 (2002)

    Google Scholar 

  12. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1 (2007)

    Article  Google Scholar 

  13. Colominas, M.A., Schlotthauer, G., Torres, M.E.: Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed. Signal Process. Control 14, 19–29 (2014)

    Article  Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

NBRC authors (DR, GVK and AB) collected the EEG data and performed preprocessing steps. The EMD frameworks were formulated by AKP and CNG. The code for Random Forest was written in MATLAB by BC, AKP and CNG. The paper was written by AKP, BC and CNG. All authors assisted in answering the reviewers comments.

This initial part of this research was funded by NBRC core and the grants Ramalingaswami fellowship (BT/RLF/Re-entry/31/2011) and Innovative Young Bio-technologist Award (IYBA) (BT/07/IYBA/2013) from the Department of Biotechnology (DBT), Ministry of Science Technology, Government of India to Arpan Banerjee. Dipanjan Roy was supported by the Ramalingaswami fellowship (BT/RLF/Re-entry/07/2014) and DST extramural grant (SR/CSRI/21/2016). Neural Engineering Lab, IIT Guwahati is supported by Startup Grant, IIT Guwahati and NECBH grant sponsored by DBT (NECBH/2019-20/177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cota Navin Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pal, A.K. et al. (2020). Empirical Mode Decomposition Algorithms for Classification of Single-Channel EEG Manifesting McGurk Effect. In: Tiwary, U., Chaudhury, S. (eds) Intelligent Human Computer Interaction. IHCI 2019. Lecture Notes in Computer Science(), vol 11886. Springer, Cham. https://doi.org/10.1007/978-3-030-44689-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44689-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44688-8

  • Online ISBN: 978-3-030-44689-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics