Abstract
The Pangeo ecosystem is an interactive computing software stack for HPC and public cloud infrastructures. In this paper, we show benchmarking results of the Pangeo platform on two different HPC systems. Four different geoscience operations were considered in this benchmarking study with varying chunk sizes and chunking schemes. Both strong and weak scaling analyses were performed. Chunk sizes between 64 MB to 512 MB were considered, with the best scalability obtained for 512 MB. Compared to certain manual chunking schemes, the auto chunking scheme scaled well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zender, C.S.: Analysis of self-describing gridded geoscience data with netCDF Operators (NCO). Environ. Model. Softw. 23(10–11), 1338–1342 (2008). https://doi.org/10.1016/j.envsoft.2008.03.004
The NCAR Command Language (Version 6.6.2) [Software]. Boulder, Colorado: UCAR/NCAR/CISL/TDD (2019). https://doi.org/10.5065/d6wd3xh5
Nitzberg, B., Schopf, J.M., Jones, J.P.: PBS Pro: grid computing and scheduling attributes. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.) Grid Resource Management. International Series in Operations Research & Management Science, vol. 64, pp. 183–190. Springer, Boston (2004). https://doi.org/10.1007/978-1-4615-0509-9_13
Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3
Pangeo: A community platform for Big Data geoscience. http://pangeo.io
Robinson, N.H., Hamman, J., Abernathey, R.: Science needs to rethink how it interacts with big data: Five principles for effective scientific big data systems. arXiv e-prints p. arXiv:1908.03356, August 2019
Eynard-Bontemps, G., Abernathey, R., Hamman, J., Ponte, A., Rath, W.: The PANGEO big data ecosystem and its use at CNES. In: Proceedings of 2019 Big Data from Space, . Munich, Germany, pp. 49–52 (2019). https://doi.org/10.2760/848593
Abernathey, R., et al.: Pangeo NSF Earthcube Proposal (2017). https://doi.org/10.6084/m9.figshare.5361094.v1
Yu, X., Ponte, A.L., Elipot, S., Menemenlis, D., Zaron, E.D., Abernathey, R.: Surface kinetic energy distributions in the global oceans from a high-resolution numerical model and surface drifter observations. Geophys. Res. Lett. 46(16), 9757–9766 (2019). https://doi.org/10.1029/2019GL083074
Rotary spectral analysis of surface currents and zonal average. https://github.com/apatlpo/mit_equinox/blob/master/hal/rechunk_rotspectra.ipynb
Kluyver, T., et al.: Jupyter Notebooks – a publishing format for reproducible computational workflows. In: Loizides, F., Scmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016). https://doi.org/10.3233/978-1-61499-649-1-87
Hoyer, S., Hamman, J.: Xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5(1), 10 (2017). https://doi.org/10.5334/jors.148
Met Office: Iris: A Python library for analysing and visualising meteorological and oceanographic data sets. Exeter, Devon (2010–2013). http://scitools.org.uk/iris
Rocklin, M.: Dask: parallel computation with blocked algorithms and task scheduling. In: Huff, K., Bergstra, J. (eds.) Proceedings of the 14th Python in Science Conference, pp. 126–132 (2015). https://doi.org/10.25080/Majora-7b98e3ed-013
Dask Development Team: Dask: library for dynamic task scheduling (2016). https://dask.org
Zaharia, M., et al.: Apache Spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016). https://doi.org/10.1145/2934664
Dask-jobqueue. https://github.com/dask/dask-jobqueue/
CNES: The Centre National d’Etudes Spatiales (CNES) is the government agency responsible for shaping and implementing France’s space policy in Europe. https://cnes.fr/
Computational and Information Systems Laboratory.: Cheyenne: SGI ICE XA Cluster (2017). https://doi.org/10.5065/d6rx99hx
JupyterHub — JupyterHub 1.0.0 documentation. https://jupyterhub.readthedocs.io/
Jupyterhub/wrapspawner. https://github.com/jupyterhub/wrapspawner
Jupyterhub/batchspawner. https://github.com/jupyterhub/batchspawner
Benchmarking and scaling studies of the Pangeo platform. https://github.com/pangeo-data/benchmarking
Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI implementation over InfiniBand. Int. J. Parallel Prog. 32(3), 167–198 (2004). https://doi.org/10.1023/B:IJPP.0000029272.69895.c1
Acknowledgment
Dr. Abernathey was supported by NSF Earthcube award 1740648. Dr. Paul and Mr. Banihirwe were both supported by NSF Earthcube award 1740633.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Odaka, T.E. et al. (2020). The Pangeo Ecosystem: Interactive Computing Tools for the Geosciences: Benchmarking on HPC. In: Juckeland, G., Chandrasekaran, S. (eds) Tools and Techniques for High Performance Computing. HUST SE-HER WIHPC 2019 2019 2019. Communications in Computer and Information Science, vol 1190. Springer, Cham. https://doi.org/10.1007/978-3-030-44728-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-44728-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44727-4
Online ISBN: 978-3-030-44728-1
eBook Packages: Computer ScienceComputer Science (R0)