Abstract
A recommender system can be considered as an information filtering system that seeks to predict the preference a user would have for a data item. It is commonly utilized in digital stores to recommend products to their users according to the users’ previous purchases. This applies to Steam as well, a widely used digital distribution platform for games. The existing recommender system mainly suggests new games to a given user by calculating similarities between games they own and those that they do not. These similarities are based on predefined attributes (game genres). Additionally, the system is able to recommend games based on the game preferences of the user’s friends. In this work, we target at creating an enhanced recommender system for Steam. The goal is to design a hybrid approach for producing suggestions that will utilize data, such as playing time, game price and game release date, in addition to the genres and the preferences of friends.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Official team fortress wiki. https://wiki.teamfortress.com/wiki/. Accessed 11 Apr 2019
Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)
Borges, R., Stefanidis, K.: Enhancing long term fairness in recommendations with variational autoencoders. In: Proceedings of the 11th International Conference on Management of Digital EcoSystems, MEDES 2019 (2019)
Bridge, D.G., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)
Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM (2016)
Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: QueRIE: collaborative database exploration. IEEE Trans. Knowl. Data Eng. 26(7), 1778–1790 (2014)
Ge, X., Chrysanthis, P.K., Pelechrinis, K.: MPG: not so random exploration of a city. In: MDM (2016)
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)
Johnson, E.: A deep dive into steam’s discovery queue. https://www.gamasutra.com/blogs/ErikJohnson/20190404/340061/A_Deep_Dive_Into_Steams_Discovery_Queue.php. Accessed 7 July 2019
Koskela, M., Simola, I., Stefanidis, K.: Open source software recommendations using github. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) TPDL 2018. LNCS, vol. 11057, pp. 279–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00066-0_24
Larson, L.: Over 13,000 steam games. https://www.kaggle.com/kingburrito666/over-13000-steam-games/. Accessed 11 Apr 2019
Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)
Machado, L., Stefanidis, K.: Fair team recommendations for multidisciplinary projects. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019, Thessaloniki, Greece, 14–17 October 2019, pp. 293–297 (2019)
Merton, R.K.: The Matthew effect in science: the reward and communication systems of science are considered. Science 159(3810), 56–63 (1968)
Ntoutsi, E., Stefanidis, K., Nørvåg, K., Kriegel, H.-P.: Fast group recommendations by applying user clustering. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 126–140. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34002-4_10
Ntoutsi, E., Stefanidis, K., Rausch, K., Kriegel, H.: Strength lies in differences: diversifying friends for recommendations through subspace clustering. In: CIKM (2014)
O’Neill, M., Vaziripour, E., Wu, J., Zappala, D.: Condensing steam: distilling the diversity of gamer behavior. In: Proceedings of the 2016 Internet Measurement Conference, IMC 2016, pp. 81–95. ACM, New York (2016). https://doi.org/10.1145/2987443.2987489. http://doi.acm.org/10.1145/2987443.2987489
Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10
Sandvig, J.J., Mobasher, B., Burke, R.D.: A survey of collaborative recommendation and the robustness of model-based algorithms. IEEE Data Eng. Bull. 31(2), 3–13 (2008)
Stefanidis, K., Kondylakis, H., Troullinou, G.: On recommending evolution measures: a human-aware approach. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, 19–22 April 2017, pp. 1579–1581 (2017)
Stefanidis, K., Ntoutsi, E., Kondylakis, H., Velegrakis, Y.: Social-based collaborative filtering. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 1–9. Springer, New York (2017). https://doi.org/10.1007/978-1-4614-7163-9_110171-1
Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in the health domain. In: ICDE (2017)
Stratigi, M., Kondylakis, H., Stefanidis, K.: FairGRecs: fair group recommendations by exploiting personal health information. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 147–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_11
Stratigi, M., Nummenmaa, J., Pitoura, E., Stefanidis, K.: Fair sequential group recommendations. In: Proceedings of the 35th ACM/SIGAPP Symposium on Applied Computing, SAC 2020 (2020)
Tamber: Steam video games. https://www.kaggle.com/tamber/steam-video-games/. Accessed 11 Apr 2019
Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: Exploring RDFS KBs using summaries. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 268–284. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_16
Yin, Z., Gupta, M., Weninger, T., Han, J.: LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: WWW (2010)
Zhang, J., Peng, Q., Sun, S., Liu, C.: Collaborative filtering recommendation algorithm based on user preference derived from item domain features. Phys. A 396, 66–76 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Gong, J., Ye, Y., Stefanidis, K. (2020). A Hybrid Recommender System for Steam Games. In: Flouris, G., Laurent, D., Plexousakis, D., Spyratos, N., Tanaka, Y. (eds) Information Search, Integration, and Personalization. ISIP 2019. Communications in Computer and Information Science, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-44900-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-44900-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44899-8
Online ISBN: 978-3-030-44900-1
eBook Packages: Computer ScienceComputer Science (R0)