Skip to main content

A Hybrid Recommender System for Steam Games

  • Conference paper
  • First Online:
Information Search, Integration, and Personalization (ISIP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1197))

Abstract

A recommender system can be considered as an information filtering system that seeks to predict the preference a user would have for a data item. It is commonly utilized in digital stores to recommend products to their users according to the users’ previous purchases. This applies to Steam as well, a widely used digital distribution platform for games. The existing recommender system mainly suggests new games to a given user by calculating similarities between games they own and those that they do not. These similarities are based on predefined attributes (game genres). Additionally, the system is able to recommend games based on the game preferences of the user’s friends. In this work, we target at creating an enhanced recommender system for Steam. The goal is to design a hybrid approach for producing suggestions that will utilize data, such as playing time, game price and game release date, in addition to the genres and the preferences of friends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/tamber/steam-video-games/.

  2. 2.

    https://www.kaggle.com/ kingburrito666/over-13000-steam-games/.

  3. 3.

    https://www.valvesoftware.com/en/.

References

  1. Official team fortress wiki. https://wiki.teamfortress.com/wiki/. Accessed 11 Apr 2019

  2. Balabanovic, M., Shoham, Y.: Content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  3. Borges, R., Stefanidis, K.: Enhancing long term fairness in recommendations with variational autoencoders. In: Proceedings of the 11th International Conference on Management of Digital EcoSystems, MEDES 2019 (2019)

    Google Scholar 

  4. Bridge, D.G., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)

    Article  Google Scholar 

  5. Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM (2016)

    Google Scholar 

  6. Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: QueRIE: collaborative database exploration. IEEE Trans. Knowl. Data Eng. 26(7), 1778–1790 (2014)

    Article  Google Scholar 

  7. Ge, X., Chrysanthis, P.K., Pelechrinis, K.: MPG: not so random exploration of a city. In: MDM (2016)

    Google Scholar 

  8. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–71 (1992)

    Article  Google Scholar 

  9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)

    Google Scholar 

  10. Johnson, E.: A deep dive into steam’s discovery queue. https://www.gamasutra.com/blogs/ErikJohnson/20190404/340061/A_Deep_Dive_Into_Steams_Discovery_Queue.php. Accessed 7 July 2019

  11. Koskela, M., Simola, I., Stefanidis, K.: Open source software recommendations using github. In: Méndez, E., Crestani, F., Ribeiro, C., David, G., Lopes, J.C. (eds.) TPDL 2018. LNCS, vol. 11057, pp. 279–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00066-0_24

    Chapter  Google Scholar 

  12. Larson, L.: Over 13,000 steam games. https://www.kaggle.com/kingburrito666/over-13000-steam-games/. Accessed 11 Apr 2019

  13. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  14. Machado, L., Stefanidis, K.: Fair team recommendations for multidisciplinary projects. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019, Thessaloniki, Greece, 14–17 October 2019, pp. 293–297 (2019)

    Google Scholar 

  15. Merton, R.K.: The Matthew effect in science: the reward and communication systems of science are considered. Science 159(3810), 56–63 (1968)

    Article  Google Scholar 

  16. Ntoutsi, E., Stefanidis, K., Nørvåg, K., Kriegel, H.-P.: Fast group recommendations by applying user clustering. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 126–140. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34002-4_10

    Chapter  Google Scholar 

  17. Ntoutsi, E., Stefanidis, K., Rausch, K., Kriegel, H.: Strength lies in differences: diversifying friends for recommendations through subspace clustering. In: CIKM (2014)

    Google Scholar 

  18. O’Neill, M., Vaziripour, E., Wu, J., Zappala, D.: Condensing steam: distilling the diversity of gamer behavior. In: Proceedings of the 2016 Internet Measurement Conference, IMC 2016, pp. 81–95. ACM, New York (2016). https://doi.org/10.1145/2987443.2987489. http://doi.acm.org/10.1145/2987443.2987489

  19. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  20. Sandvig, J.J., Mobasher, B., Burke, R.D.: A survey of collaborative recommendation and the robustness of model-based algorithms. IEEE Data Eng. Bull. 31(2), 3–13 (2008)

    Google Scholar 

  21. Stefanidis, K., Kondylakis, H., Troullinou, G.: On recommending evolution measures: a human-aware approach. In: 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, 19–22 April 2017, pp. 1579–1581 (2017)

    Google Scholar 

  22. Stefanidis, K., Ntoutsi, E., Kondylakis, H., Velegrakis, Y.: Social-based collaborative filtering. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 1–9. Springer, New York (2017). https://doi.org/10.1007/978-1-4614-7163-9_110171-1

    Chapter  Google Scholar 

  23. Stratigi, M., Kondylakis, H., Stefanidis, K.: Fairness in group recommendations in the health domain. In: ICDE (2017)

    Google Scholar 

  24. Stratigi, M., Kondylakis, H., Stefanidis, K.: FairGRecs: fair group recommendations by exploiting personal health information. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS, vol. 11030, pp. 147–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98812-2_11

    Chapter  Google Scholar 

  25. Stratigi, M., Nummenmaa, J., Pitoura, E., Stefanidis, K.: Fair sequential group recommendations. In: Proceedings of the 35th ACM/SIGAPP Symposium on Applied Computing, SAC 2020 (2020)

    Google Scholar 

  26. Tamber: Steam video games. https://www.kaggle.com/tamber/steam-video-games/. Accessed 11 Apr 2019

  27. Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: Exploring RDFS KBs using summaries. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 268–284. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_16

    Chapter  Google Scholar 

  28. Yin, Z., Gupta, M., Weninger, T., Han, J.: LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: WWW (2010)

    Google Scholar 

  29. Zhang, J., Peng, Q., Sun, S., Liu, C.: Collaborative filtering recommendation algorithm based on user preference derived from item domain features. Phys. A 396, 66–76 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Stefanidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gong, J., Ye, Y., Stefanidis, K. (2020). A Hybrid Recommender System for Steam Games. In: Flouris, G., Laurent, D., Plexousakis, D., Spyratos, N., Tanaka, Y. (eds) Information Search, Integration, and Personalization. ISIP 2019. Communications in Computer and Information Science, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-44900-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44900-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44899-8

  • Online ISBN: 978-3-030-44900-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics