Abstract
Fog computing has been initiated to reduce communications delays between users and cloud systems. The idea of Fog computing allows users to interact with intermediate servers, while reaping the benefits of reliability and elasticity, which are inherent in cloud computing. Fog computing can leverage Internet of Things (IoT) by providing a reliable service layer for time-sensitive applications and real-time analytics. While the concept of fog computing is still evolving, it is pertinent to study the domain of fog computing and analyze its strengths and weaknesses. Motivated by this need, this chapter describes the architecture of fog computing and explain its efficacy with respect to different applications. The chapter highlights some of the key challenges associated with this evolving platform along with future directions of research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), pp. 464–470. IEEE (2014)
Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Future Gener. Comput. Syst. (2018)
Agarwal, S., Yadav, S., Yadav, A.K.: An efficient architecture and algorithm for resource provisioning in fog computing. Int. J. Inf. Eng. Electron. Bus. 8(1), 48 (2016)
Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets deep learning for car instance segmentation in urban scenes. In: British Machine Vision Conference, vol. 1, p. 2 (2017)
Ali, M.: Green cloud on the horizon. In: IEEE International Conference on Cloud Computing, pp. 451–459. Springer (2009)
Andriopoulou, F., Dagiuklas, T., Orphanoudakis, T.: Integrating IoT and fog computing for healthcare service delivery. In: Components and Services for IoT Platforms, pp. 213–232. Springer (2017)
Balevi, E., Gitlin, R.D.: Unsupervised machine learning in 5g networks for low latency communications. In: 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–2. IEEE (2017)
Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 169–186. Springer (2014)
Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic urban surveillance video stream processing using fog computing. In: 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), pp. 105–112. IEEE (2016)
Chen, Y., Abraham, A., Yang, B.: Hybrid flexible neural-tree-based intrusion detection systems. Int. J. Intell. Syst. 22(4), 337–352 (2007)
Chiang, M., Ha, S., Chih-Lin, I., Risso, F., Zhang, T.: Clarifying fog computing and networking: 10 questions and answers. IEEE Commun. Mag. 55(4), 18–20 (2017)
Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)
Cho, S.-B.: Exploiting machine learning techniques for location recognition and prediction with smartphone logs. Neurocomputing 176, 98–106 (2016)
Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. In: Internet of Things, pp. 61–75. Elsevier (2016)
Diro, A.A., Chilamkurti, N.: Distributed attack detection scheme using deep learning approach for internet of things. Future Gener. Comput. Syst. 82, 761–768 (2018)
Dsouza, C., Ahn, G.J., Taguinod, M.: Policy-driven security management for fog computing: preliminary framework and a case study. In: 2014 IEEE 15th International Conference on Information Reuse and Integration (IRI), pp 16–23. IEEE (2014)
Hoque, S., de Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container orchestration in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 294–299. IEEE (2017)
Kaur, K., Dhand, T., Kumar, N., Zeadally, S.: Container-as-a-service at the edge: trade-off between energy efficiency and service availability at fog nano data centers. IEEE Wirel. Commun. 24(3), 48–56 (2017)
Lee, K., Kim, D., Ha, D., Rajput, U., Oh, H.: On security and privacy issues of fog computing supported internet of things environment. In: 2015 6th International Conference on the Network of the Future (NOF), pp. 1–3. IEEE (2015)
Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: focusing on mobile users at the edge. arXiv preprint arXiv:1502.01815 (2015)
MacArthur, P., Liu, Q., Russell, R.D., Mizero, F., Veeraraghavan, M., Dennis, J.M.: An integrated tutorial on infiniband, verbs, and MPI. IEEE Commun. Surv. Tutor. 19(4), 2894–2926 (2017)
Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Internet of Everything, pp. 103–130. Springer (2018)
Markakis, E., Mastorakis, G., Mavromoustakis, C.X., Pallis, E.: Cloud and Fog Computing in 5G Mobile Networks: Emerging Advances and Applications. Institution of Engineering and Technology (2017)
Markakis, E.K., Karras, K., Zotos, N., Sideris, A., Moysiadis, T., Corsaro, A., Alexiou, G., Skianis, C., Mastorakis, G., Mavromoustakis, C.X., et al.: Exegesis: extreme edge resource harvesting for a virtualized fog environment. IEEE Commun. Mag. 55(7), 173–179 (2017)
Nikoloudakis, Y., Panagiotakis, S., Markakis, E., Pallis, E., Mastorakis, G., Mavromoustakis, C.X., Dobre, C.: A fog-based emergency system for smart enhanced living environments. IEEE Cloud Comput. (6), 54–62 (2016)
Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., Navab, N.: Machine learning-based augmented reality for improved surgical scene understanding. Comput. Med. Imag. Graph. 41, 55–60 (2015)
Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: a survey. ACM Comput. Surv. (CSUR) 50(3), 32 (2017)
Pham, X.Q., Huh, E.N.: Towards task scheduling in a cloud-fog computing system. In: 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–4. IEEE (2016)
Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: A survey and analysis of security threats and challenges. Future Gener. Comput. Syst. 78, 680–698 (2018)
Salonikias, S., Mavridis, I., Gritzalis, D.: Access control issues in utilizing fog computing for transport infrastructure. In: International Conference on Critical Information Infrastructures Security, pp. 15–26. Springer (2015)
Sheikh, F., Fazal, H., Taqvi, F., Shamsi, J.: Power-aware server selection in nano data center. In: 2015 IEEE 40th Local Computer Networks Conference Workshops (LCN Workshops), pp. 776–782. IEEE (2015)
Shi, W., Cao, J., Zhang, Q., Li, Y., Lanyu, X.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)
Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., Yang, Q.: Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Ind. Inf. 13(5), 2140–2150 (2017)
Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., Yang, Q.: A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE BigData & SocialInformatics, p. 28. ACM (2015)
Teerapittayanon, S., McDanel, B., Kung, H.T.: Distributed deep neural networks over the cloud, the edge and end devices. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS, pp. 328–339. IEEE (2017)
Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)
Varghese, B., Wang, N., Nikolopoulos, D.S., Buyya, R.: Feasibility of fog computing. arXiv preprint arXiv:1701.05451 (2017)
Williams, J.B.: Fibre channel over ethernet, 8 July 2014. US Patent 8,774,215 (2014)
Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42. ACM (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Shamsi, J.A., Hanif, M., Zeadally, S. (2020). Fog Computing: Data Analytics for Time-Sensitive Applications. In: Mastorakis, G., Mavromoustakis, C., Batalla, J., Pallis, E. (eds) Convergence of Artificial Intelligence and the Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-44907-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-44907-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44906-3
Online ISBN: 978-3-030-44907-0
eBook Packages: EngineeringEngineering (R0)