Skip to main content

Part of the book series: Internet of Things ((ITTCC))

  • 894 Accesses

Abstract

The chapter describes modern neural network designs and discusses their advantages and disadvantages. The state-of-the-art neural networks are usually too much computationally difficult which limits their use in mobile and IoT applications. However, they can be modified with special design techniques which would make them suitable for mobile or IoT applications with limited computational power. These techniques for designing more efficient neural networks are described in great detail. Using them opens a way to create extremely efficient neural networks for mobile or even IoT applications. Such neural networks make the applications very intelligent which paves the way for very smart sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI 16(2016), pp. 265–283 (2016)

    Google Scholar 

  2. Brabandere, B., Neven, D., Gool, L.: Semantic instance segmentation with a discriminative loss function. In: CoRR (2017). arXiv:1708.02551v1

  3. Braun, M., Krebs, S., Flohr, F., Gavrila, D.M.: The EuroCity persons dataset: a novel benchmark for object detection. In: CoRR (2018). arXiv:1805.07193v2

  4. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: CoRR preprint (2017). arXiv:1706.05587

  5. Chen, L.-C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022 (2018). arXiv:1712.04837v1

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE TPAMI 40(4), pp. 834–848 (2018)

    Google Scholar 

  7. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, Ch., Zhang, Z.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. In: CoRR (2015). arXiv:1512.01274

  8. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: NIPS (2017) arXiv:1707.01629v2

  9. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR, pp. 1251–1258 (2017). arXiv:1610.02357v3

  10. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: ICLR (2016). arXiv:1511.07289v5

  11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele. B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  12. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS, pp. 379–387 (2016). arXiv:1605.06409v2

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  14. Denker, J.S., Gardner, W.R., Graf, H.P, Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., BaIrd, H.S., Guyon I.: Neural Network Recognizer for Hand-Written Zip Code Digits. AT&T Bell Laboratories (1989)

    Google Scholar 

  15. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. In: IJCV 88(2), pp. 303–338 (2010)

    Google Scholar 

  16. Everingham, M., Eslami, S.M.A., Gool, L.V., Williams, Ch.K.I., Winn, J., Zisserma, A.: The pascal visual object classes challenge a retrospective. In: IJCV 111(1), pp. 98–136 (2014)

    Google Scholar 

  17. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. In: Biol. Cybern. 36(4), pp. 193–202 (1980). https://doi.org/10.1007/bf00344251

    Article  MATH  Google Scholar 

  18. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014). arXiv:1311.2524v5

  19. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  20. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Proceedings of Advanced in NIPS, Montreal, Canada, pp. 1135–1143 (2015). arXiv:1506.02626v3

  21. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In: ICLR (2016). arXiv:1510.00149v5

  22. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE: efficient inference engine on compressed deep neural network (2016). arXiv:1602.01528v1

  23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV (2015). arXiv:1502.01852v1

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016), pp. 770–778. arXiv:1512.03385v1

  25. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: ECCV (2016), pp. 630–645. arXiv:1603.05027v3

  26. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: ICCV (2017). arXiv:1703.06870v3

  27. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of IEEE ICCV, vol. 2, pp. 1389–1397 (2017)

    Google Scholar 

  28. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018), pp. 7132–7141. arXiv:1709.01507v2

  29. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:1207.0580

  30. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications. In: CoRR (2017). arXiv:1704.04861v1

  31. Huang, G., Sun, Y., Liuy, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: ECCV (4), vol. 9908 of Lecture Notes in Computer Science, pp. 646–661 (2016). arXiv:1603.09382v3

  32. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017). arXiv:1608.06993v5

  33. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017). arXiv:1611.10012v3

  34. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neural networks: training neural networks with low precision weights and activations. In: CoRR (2016). arXiv:1609.07061

  35. Huh, M., Agrawal, P., Efros, A.: What makes ImageNet good for transfer learning? In: CoRR (2016). arXiv:1608.08614

  36. Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD: Deconvolutional single shot detector (2016). arXiv:1701.06659

  37. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1 MB model size. In: CoRR (2016). arXiv:1602.07360v4

  38. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, Lille, France, pp. 448–456 (2015)

    Google Scholar 

  39. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM International Conference on Multimedia, pp. 675–678 (2014). arXiv:1408.5093

  40. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, University of Toronto (2009)

    Google Scholar 

  41. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105 (2012)

    Google Scholar 

  42. Krizhevsky, A.: cuda-convnet: High-performance c++/cuda implementation of convolutional neural networks (2012)

    Google Scholar 

  43. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), pp. 541–551 (1989)

    Google Scholar 

  44. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), pp. 2278–2324 (1998)

    Google Scholar 

  45. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014). arXiv:1405.0312v3

  46. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017). arXiv:1612.03144v2

  47. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: ICCV (2017). arXiv:1708.02002v2

  48. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. In: ICLR (2016). arXiv:1506.04579v2

  49. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.: SSD: single shot multibox detector. In: ECCV (2016)

    Google Scholar 

  50. Liu, S., Jia, J., Fidler, S., Urtasun, R.: SGN: sequential grouping networks for instance segmentation. In: ICCV, pp. 3516–3524 (2017)

    Google Scholar 

  51. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018). arXiv:1803.01534v1

  52. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. In: CVPR, pp. 3431–3440 (2015). arXiv:1411.4038v2

  53. Luo, W., Li, Y., Urtasun, R., Zemel, R.L.: Understanding the effective receptive field in deep convolutional neural networks. In: CoRR (2017). arXiv:1701.04128v2

  54. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)

    Google Scholar 

  55. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Maaten, L.: Exploring the limits of weakly supervised pretraining. In: ECCV (2), vol. 11206 of Lecture Notes in Computer Science, pp. 185–201 (2018). arXiv:1805.00932v1

  56. Markidis, S., Chien, S.W.D., Laure, E., Peng, I.B., Vetter, J.S.: NVIDIA tensor core programmability, performance & precision. In: IEEE IPDPS Workshops, pp. 522–531 (2018). arXiv:1803.04014v1

  57. Mavromoustakis, C.X., Batalla, J.M., Mastorakis, G., Markakis, E., Pallis, E.: Socially oriented edge computing for energy awareness in IoT architectures. IEEE Commun. Mag. 56(7), pp. 139–145 (2018)

    Google Scholar 

  58. Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using logarithmic data representation. In: CoRR (2016). arXiv:1603.01025

  59. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th ICML, pp. 807–814 (2010)

    Google Scholar 

  60. Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV (2017)

    Google Scholar 

  61. Pleiss, G., Chen, D., Huang, G., Li, T., Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of DenseNets. In: CoRR (2017). arXiv:1707.06990v1

  62. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: ‘Large kernel matters—improve semantic segmentation by global convolutional network. In: CVPR, pp. 1743–1751 (2017). arXiv:1703.02719v1

  63. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M., (eds.) ECCV, vol. 4, pp. 525–542 (2016)

    Google Scholar 

  64. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016). arXiv:1506.02640v5

  65. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR (2017). arXiv:1612.08242v1

  66. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)

    Google Scholar 

  67. Ronneberger, O., Fischer, P., Brox, T.: ’U-Net: Convolutional networks for biomedical image segmentation. In: MICCAI (2015). arXiv:1505.04597v1

  68. Ruan, J., Hu, X., Huo, X., Shi, Y., Chan, F.T.S., Wang, X., Manogaran, G., Mastorakis, G., Mavromoustakis, C.X., Zhao, X.: An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues. In: Neural Comput. Appl. 2019, pp. 1–16 (2019)

    Google Scholar 

  69. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. In: Nature 323(6088), pp. 533–536 (1986)

    Google Scholar 

  70. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. In: IJCV 115(3), pp. 211–252 (2015)

    Google Scholar 

  71. Sanchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. In: RR-8209, INRIA (2013)

    Google Scholar 

  72. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: ‘CVPR’ IEEE Computer Society, pp. 4510–4520 (2018). arXiv:1801.04381v3

  73. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015). arXiv:1409.1556v6

  74. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. In: JMLR 15, pp. 1929–1958 (2014)

    Google Scholar 

  75. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: NIPS (2015). arXiv:1507.06228v2

  76. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of ICCV (2017). arXiv:1707.02968v2

  77. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1–9 (2015). arXiv:1409.4842v1

  78. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016). arXiv:1512.00567v3

  79. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: ICLR Workshop, p. 12 (2016). arXiv:1602.07261v2

  80. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: CVPR (2014), pp. 1701–1708 (2014)

    Google Scholar 

  81. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. In: IJCV (2013)

    Google Scholar 

  82. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical Report, Caltech (2010)

    Google Scholar 

  83. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 5987–5995 (2017). arXiv:1611.05431v2

  84. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional neural networks. In: ECCV (2014). arXiv:1311.2901v3

  85. Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: learned quantization for highly accurate and compact deep neural networks. In: Proceedings of ECCV (2018). arXiv:1807.10029v1

  86. Zhang, X., Li, Z., Loy, C., Lin, D.: Polynet: a pursuit of structural diversity in very deep networks. In: CVPR (2017). arXiv:1611.05725v2

  87. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR (2018). arXiv:1707.01083v2

  88. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017). arXiv:1612.01105v2

  89. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless cnns with low-precision weights. In: Proceedings of ICLR (2017)

    Google Scholar 

  90. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. In: IEEE TPAMI (2017)

    Google Scholar 

  91. Zhuang, B., Shen, Ch., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: CoRR (2018). arXiv:1811.10413v2

Download references

Acknowledgements

This work has been supported by Slovak national project VEGA 2/0155/19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Malík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malík, P., Krištofík, Š. (2020). AI Architectures for Very Smart Sensors. In: Mastorakis, G., Mavromoustakis, C., Batalla, J., Pallis, E. (eds) Convergence of Artificial Intelligence and the Internet of Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-44907-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44907-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44906-3

  • Online ISBN: 978-3-030-44907-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics