Abstract
Nowadays, the use of transfer learning, a deep learning technique, is growing to solve imaging problems in several contexts such as biomedicine where the amount of images is limited. However, applying transfer learning might be challenging for users without experience due to the complexity of the deep learning frameworks. To facilitate the task of creating and using transfer learning models, we developed FrImCla, a framework for creating image classification models. In this paper, we have developed a set of Jupyter notebooks that use FrImCla to facilitate the task of creating and using image classification models for users without knowledge in deep learning frameworks and without any special purpose hardware.
Partially supported by Ministerio de Industria, Economía y Competitividad, project MTM2017-88804-P; Agencia de Desarrollo Económico de La Rioja, project 2017-I-IDD-00018; and FPI Grant of the Comunidad Autónoma de La Rioja.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Carneiro, T., Da Nóbrega, R.V.M., Nepomuceno, T., Bian, G., De Albuquerque, V.H.C., Filho, P.P.R.: Performance analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access 6, 61677–61685 (2018). https://doi.org/10.1109/ACCESS.2018.2874767
Christodoulidis, S., et al.: Multisource transfer learning with convolutional neural networks for lung pattern analysis. IEEE J. Biomed. Health Inf. 21(1), 76–84 (2017)
Domínguez, C., Heras, J., Mata, E., Pascual, V.: DecoFungi: a web application for automatic characterisation of dye decolorisation in fungal strains. BMC Bioinform. 19(1), 66 (2018)
García-Domínguez, M., et al.: FrImCla: A Framework for Image Classification using Traditional and Transfer Learning Techniques. Preprint (2019). https://github.com/ManuGar/FrImCla
Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59
He, K., et al.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–778. IEEE Computer Society, IEEE (2016)
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 2261–2269 (2017)
Kluyver, T., et al.: Jupyter notebooks – a publishing format for reproducible computational workflows. In: Proceedings of the 20th International Conference on Electronic Publishing, pp. 87–90. IOS Press (2016)
Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F.V., Avila, S., Valle, E.: Knowledge transfer for melanoma screening with deep learning. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 297–300, April 2017. https://doi.org/10.1109/ISBI.2017.7950523
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Razavian, A.S., et al.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2014), Columbus, Ohio, USA, pp. 512–519. IEEE Computer Society, IEEE (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 1–9. IEEE Computer Society, IEEE (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
García-Domínguez, M., Domínguez, C., Heras, J., Mata, E., Pascual, V. (2020). Jupyter Notebooks for Simplifying Transfer Learning. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-45096-0_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45095-3
Online ISBN: 978-3-030-45096-0
eBook Packages: Computer ScienceComputer Science (R0)