Skip to main content

Unsupervised Anomaly Map for Image-Based Screening

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12014))

Included in the following conference series:

  • 1025 Accesses

Abstract

Computer-aided screening methods can reduce the burden of manual grading. However, manual grading is still required to provide datasets with annotated pathologies that are used for the development of supervised machine learning based systems of the kind. In this paper we demonstrate a different method, based on unsupervised anomaly detection techniques, that can be exploited to detect and localize pathologies at the pixel-level in retinal images. We introduce a new reconstruction-based model architecture, trained with only healthy retinal images, and leverage it to generate anomaly maps from where the anomalous patterns can be located, which allows to automatically discover the image locations that can potentially be pathological lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, S., Risteski, A., Zhang, Y.: Do GANs learn the distribution? Some theory and empirics. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=BJehNfW0-

  2. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  3. Decencière, E., Zhang, X., Cazuguel, G., Lay, B., et al.: Feedback on a publicly distributed database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    Article  Google Scholar 

  4. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recogn. 58, 121–134 (2016)

    Article  Google Scholar 

  5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  6. Goh, J., Cheung, C., et al.: Retinal imaging techniques for diabetic retinopathy screening. J. Diab. Sci. Technol. 10(2), 282–294 (2016)

    Article  Google Scholar 

  7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  8. Nguyen, L.H., Goulet, J.A.: Anomaly detection with the switching kalman filter for structural health monitoring. Struct. Control Health Monit. 25(4), e2136 (2018)

    Article  Google Scholar 

  9. Nørgaard, M., Grauslund, J.: Automated screening for diabetic retinopathy-a systematic review. Ophthalmic Res. 60(1), 9–17 (2018)

    Article  Google Scholar 

  10. Sabokrou, M., Fathy, M., Hoseini, M.: Video anomaly detection and localisation based on the sparsity and reconstruction error of auto-encoder. Electron. Lett. 52(13), 1122–1124 (2016)

    Article  Google Scholar 

  11. Almao, E.C., Golpayegani, F.: Are mobile apps usable and accessible for senior citizens in smart cities? In: Zhou, J., Salvendy, G. (eds.) HCII 2019. LNCS, vol. 11592, pp. 357–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22012-9_26

    Chapter  Google Scholar 

  12. Schlegl, T., et al.: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology 125(4), 549–558 (2018)

    Article  Google Scholar 

  13. Sutradhar, S., Rouco, J., Ortega, M.: Blind-spot network for image anomaly detection: a new approach to diabetic retinopathy screening. In: 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 541–546 (2019)

    Google Scholar 

  14. Taboada-Crispi, A., Sahli, H., Hernandez-Pacheco, D., et al.: Anomaly detection in medical image analysis. In: Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications, pp. 426–446. IGI Global (2009)

    Google Scholar 

  15. Tan, C.C., Eswaran, C.: Reconstruction and recognition of face and digit images using autoencoders. Neural Comput. Appl. 19(7), 1069–1079 (2010)

    Article  Google Scholar 

  16. Vidal, P.L., de Moura, J., Novo, J., Penedo, M.G., Ortega, M.: Intraretinal fluid identification via enhanced maps using optical coherence tomography images. Biomed. Opt. Express 9(10), 4730 (2018)

    Article  Google Scholar 

  17. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  18. World Health Organization: Global report on diabetes (2016)

    Google Scholar 

  19. Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions for unsupervised outlier removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1519 (2015)

    Google Scholar 

Download references

Acknowledgement

This research is supported by the Instituto de Salud Carlos III, Government of Spain and the ERDF of the EU through the DTS15/00153 research project. The authors also receive financial support from the ERDF and ESF of the EU, and Xunta de Galicia through the Centro Singular de Investigacin de Galicia, accreditation 2016–2019, ref. ED431G/01 and Grupos de Referencia Competitiva, ref. ED481A-2017/328 research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Rouco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sutradhar, S., Rouco, J., Ortega, M. (2020). Unsupervised Anomaly Map for Image-Based Screening. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45096-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45095-3

  • Online ISBN: 978-3-030-45096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics