Skip to main content

DeepCompareJ: Comparing Image Classification Models

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12014))

Included in the following conference series:

Abstract

Image classification is a computer vision task that has several applications in diverse fields like security, biology or medicine; and, currently, deep learning techniques have become the state-of-the-art to create image classification models. This growing use of deep learning techniques is due to the large amount of data, the fast increase of the computer processing capacity, and the openness of deep learning tools. However, whenever deep learning techniques are used to solve a classification problem, we can find several deep learning frameworks with their own peculiarities, and different models in each framework; hence, it is natural to wonder which option fits better our problem. In this paper, we present DeepCompareJ, an open-source tool that has been designed to compare, with respect to a given dataset, the quality of deep models created using different frameworks.

Supported by Ministerio de Industria, Economía y Competitividad, project MTM2017-88804-P; Agencia de Desarrollo Econmico de La Rioja, project 2017-I-IDD-00018; and FPU Grant 16/06903 of the Spanish MEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using convolutional neural networks for object classification within x-ray baggage security imagery. In: 2016 IEEE International Conference on Image Processing (ICIP). pp. 1057–1061 (2016)

    Google Scholar 

  2. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., et al.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6), (2017)

    Google Scholar 

  3. Chen, T., et al.: MxNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In: Proceedings of Neural Information Processing Systems (NIPS 2015) - Workshop on Machine Learning Systems (2015)

    Google Scholar 

  4. Chollet, F.: Keras: The Python Deep Learning library (2015), https://keras.io

  5. Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Tech. rep, IDIAP (2002)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 248–255 (2009)

    Google Scholar 

  7. Eclipse Deeplearning4j Development Team: Deeplearning4j: Open-source, distributed deep learning for the jvm (2018), https://deeplearning4j.org/

  8. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) pp. 770–778 (2016)

    Google Scholar 

  10. Inés, A., Domínguez, C., Heras, J., Mata, E., Pascual, V.: DeepClas4Bio: Connecting bioimaging tools with deep learning frameworks for image classification. Computers in Biology and Medicine 108, 49–56 (2019)

    Article  Google Scholar 

  11. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM (2014)

    Google Scholar 

  12. K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Johansen et al.: KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference. pp. 164–169. MMSys’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3083187.3083212

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  14. ModelZoo: Model Zoo: Discover open source deep learning code and pretrained models (2018), https://modelzoo.co/

  15. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: Proceedings of Neural Information Processing Systems (NIPS 2017)- Workshop (2017)

    Google Scholar 

  16. Rajaraman, S., Antani, S.K., Poostchi, M., Silamut, K., Hossain, M.A., Maude, R.J., Jaeger, S., Thoma, G.R.: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ (2018), https://lhncbc.nlm.nih.gov/system/files/pub9752.pdf

  17. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: Proceedings of International Conference on Learning Representation (ICLR 2015) (2015)

    Google Scholar 

  18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). pp. 1–9 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Inés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inés, A., Domínguez, C., Heras, J., Mata, E., Pascual, V. (2020). DeepCompareJ: Comparing Image Classification Models. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45096-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45095-3

  • Online ISBN: 978-3-030-45096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics