Abstract
Image classification is a computer vision task that has several applications in diverse fields like security, biology or medicine; and, currently, deep learning techniques have become the state-of-the-art to create image classification models. This growing use of deep learning techniques is due to the large amount of data, the fast increase of the computer processing capacity, and the openness of deep learning tools. However, whenever deep learning techniques are used to solve a classification problem, we can find several deep learning frameworks with their own peculiarities, and different models in each framework; hence, it is natural to wonder which option fits better our problem. In this paper, we present DeepCompareJ, an open-source tool that has been designed to compare, with respect to a given dataset, the quality of deep models created using different frameworks.
Supported by Ministerio de Industria, Economía y Competitividad, project MTM2017-88804-P; Agencia de Desarrollo Econmico de La Rioja, project 2017-I-IDD-00018; and FPU Grant 16/06903 of the Spanish MEC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using convolutional neural networks for object classification within x-ray baggage security imagery. In: 2016 IEEE International Conference on Image Processing (ICIP). pp. 1057–1061 (2016)
Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., et al.: Classification of breast cancer histology images using convolutional neural networks. PLoS ONE 12(6), (2017)
Chen, T., et al.: MxNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In: Proceedings of Neural Information Processing Systems (NIPS 2015) - Workshop on Machine Learning Systems (2015)
Chollet, F.: Keras: The Python Deep Learning library (2015), https://keras.io
Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Tech. rep, IDIAP (2002)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 248–255 (2009)
Eclipse Deeplearning4j Development Team: Deeplearning4j: Open-source, distributed deep learning for the jvm (2018), https://deeplearning4j.org/
Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016) pp. 770–778 (2016)
Inés, A., Domínguez, C., Heras, J., Mata, E., Pascual, V.: DeepClas4Bio: Connecting bioimaging tools with deep learning frameworks for image classification. Computers in Biology and Medicine 108, 49–56 (2019)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional Architecture for Fast Feature Embedding. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM (2014)
K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Johansen et al.: KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference. pp. 164–169. MMSys’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3083187.3083212
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)
ModelZoo: Model Zoo: Discover open source deep learning code and pretrained models (2018), https://modelzoo.co/
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: Proceedings of Neural Information Processing Systems (NIPS 2017)- Workshop (2017)
Rajaraman, S., Antani, S.K., Poostchi, M., Silamut, K., Hossain, M.A., Maude, R.J., Jaeger, S., Thoma, G.R.: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ (2018), https://lhncbc.nlm.nih.gov/system/files/pub9752.pdf
Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: Proceedings of International Conference on Learning Representation (ICLR 2015) (2015)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). pp. 1–9 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Inés, A., Domínguez, C., Heras, J., Mata, E., Pascual, V. (2020). DeepCompareJ: Comparing Image Classification Models. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-45096-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45095-3
Online ISBN: 978-3-030-45096-0
eBook Packages: Computer ScienceComputer Science (R0)