Skip to main content

A Linear Parameter Varying ARX Model for Describing Biomedical Signal Couplings

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Abstract

Biomedical signal processing frequently deals with information extraction for clinical decision support. A major challenge in this field is to reveal diagnostic information by eliminating undesired interfering influences. In case of the electrocardiogram, e.g., a frequently arising interference is caused by respiration, which possibly superimposes diagnostic information. Respiratory sinus arrhythmia, i.e., the acceleration and deceleration of the heartrate (HR) during inhalation and exhalation, respectively, is a well-known phenomenon, which strongly influences the ECG. This influence becomes even more important, when investigating the so-called heart rate variability, a diagnostically powerful signal derived from the ECG. In this work, we propose a model for capturing the relationship between the HR and the respiration, thereby taking the time-variance of physiological systems into account. To this end, we show that so-called linear parameter varying autoregressive models with exogenous input are well suited for modeling the coupling between the two signals of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stein, P.K., Bosner, M.S., Kleiger, R.E., Conger, B.M.: Heart rate variability: a measure of cardiac autonomic tone. Am. Heart J. 127(5), 1376–1381 (1994)

    Article  Google Scholar 

  2. Struhal, W., et al.: Heart rate spectra confirm the presence of autonomic dysfunction in dementia patients. J. Alzheimers Dis. 54(2), 657–667 (2016)

    Article  Google Scholar 

  3. Malik, M., Farrell, T., Cripps, T., Camm, A.: Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur. Heart J. 10(12), 1060–1074 (1989)

    Article  Google Scholar 

  4. Langewitz, W., Rüddel, H., Schächinger, H.: Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress. Am. Heart J. 127(1), 122–128 (1994)

    Article  Google Scholar 

  5. Choi, J., Gutierrez-Osuna, R.: Removal of respiratory influences from heart rate variability in stress monitoring. IEEE Sens. J. 11(11), 2649–2656 (2011)

    Article  Google Scholar 

  6. Lenis, G., Kircher, M., Lázaro, J., Bailón, R., Gil, E.: Separating the effect of respiration on the heart rate variability using Granger’s causality and linear filtering. Biomed. Sig. Process. Control 31, 272–287 (2017)

    Article  Google Scholar 

  7. Angelone, A., Coulter, N.A.: Respiratory sinus arrhythmia: a frequency dependent phenomenon. J. Appl. Physiol. 19(3), 479–482 (1964)

    Article  Google Scholar 

  8. Tóth, R.: Modeling and Identification of Linear Parameter-Varying Systems, vol. 403. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13812-6

    Book  MATH  Google Scholar 

  9. Hirsch, J.A., Bishop, B.: Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol.-Heart Circ. Physiol. 241(4), 620–629 (1981)

    Article  Google Scholar 

  10. Bamieh, B., Giarre, L.: Identification of linear parameter varying models. Int. J. Robust Nonlinear Control 12(9), 841–853 (2002)

    Article  MathSciNet  Google Scholar 

  11. Deep, K., Singh, K.P., Kansal, M.L., Mohan, C.: A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  13. Pitzalis, M.V., et al.: Effect of respiratory rate on the relationships between RR interval and systolic blood pressure fluctuations: a frequency-dependent phenomenon. Cardiovasc. Res. 38(2), 332–339 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Upper Austrian Medical Cognitive Computing Center (\(\text {MC}^3\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Böck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Böck, C., Kostoglou, K., Kovács, P., Huemer, M., Meier, J. (2020). A Linear Parameter Varying ARX Model for Describing Biomedical Signal Couplings. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45096-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45095-3

  • Online ISBN: 978-3-030-45096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics