Abstract
We propose a novel method to delineate and segment ECG heartbeats, i.e. to provide model curves for the P, QRS, and T waves, and to extract the fiducial points of them. The main idea of our method is to apply an adaptive transformation by means of rational functions to model the heartbeats and their waveforms. We suggest to represent the heartbeats with a linear combination of rational functions that are selected adaptively to the ECG signals through a non-linear optimization. This leads to a simple, yet morphologically accurate description of the heartbeats, and results a direct segmentation of them. Then, we derived the fiducial points based on the analytical model curves extracted from the rational representation. Multiple geometric concepts and their combination is discussed to this order. The evaluations were performed on the QT Database, and the results are compared to the previous ones, proving the efficiency of our method.
G. Bognár—Supported by the ÚNKP-18-3 New National Excellence Program of the Ministry of Human Capacities of Hungary.
S. Fridli—EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies - The Project is supported by the Hungarian Government and co-financed by the European Social Fund.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bognár, G., Fridli, S.: Heartbeat classification of ECG signals using rational function systems. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2017. LNCS, vol. 10672, pp. 187–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74727-9_22
Bognár, G., Fridli, S.: ECG heartbeat classification by means of variable rational projection (to appear)
Bognár, G., Schipp, F.: Geometric interpretation of QRS complexes in ECG signals by rational functions. Ann. Univ. Sci. Bp. Sect. Comput. 47, 155–166 (2018)
Fridli, S., Kovács, P., Lócsi, L., Schipp, F.: Rational modeling of multi-lead QRS complexes in ECG signals. Ann. Univ. Sci. Bp. Sect. Comput. 37, 145–155 (2012)
Fridli, S., Lócsi, L., Schipp, F.: Rational function systems in ECG processing. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 88–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27549-4_12
Fridli, S., Schipp, F.: Biorthogonal systems to rational functions. Ann. Univ. Sci. Bp. Sect. Comput. 35, 95–105 (2011)
Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432 (1973)
Heuberger, P.S.C., van den Hof, P.M.J., Wahlberg, B. (eds.): Modelling and Identification with Rational Orthogonal Basis Functions. Springer, London (2005). https://doi.org/10.1007/1-84628-178-4
Kovács, P.: Transformation methods in signal processing. Ph.D. thesis, ELTE Eötvös Loránd University, Budapest, Hungary, May 2016
Kovács, P.: Rational variable projection methods in ECG signal processing. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2017. LNCS, vol. 10672, pp. 196–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74727-9_23
Kovács, P., Böck, C., Meier, J., Huemer, M.: ECG segmentation using adaptive Hermite functions. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1476–1480, October 2017
Kovács, P., Lócsi, L.: RAIT: the rational approximation and interpolation toolbox for Matlab, with experiments on ECG signals. Int. J. Adv. Telecom. Elect. Sign. Syst. 1(2–3), 67–752 (2012)
Laguna, P., Mark, R.G., Goldberg, A., Moody, G.B.: A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG. In: IEEE Computers in Cardiology, pp. 673–676, September 1997
Laguna, P., Jané, R., Caminal, P.: Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database. Comput. Biomed. Res. 27(1), 45–60 (1994)
Lócsi, L.: A hyperbolic variant of the Nelder–Mead simplex method in low dimensions. Acta Univ. Sapientiae Math. 5(2), 169–183 (2013)
Martinez, J.P., Almeida, R., Olmos, S., Rocha, A.P., Laguna, P.: A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)
Zhang, D.: Wavelet approach for ECG baseline wander correction and noise reduction. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1212–1215 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bognár, G., Fridli, S. (2020). ECG Segmentation by Adaptive Rational Transform. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-45096-0_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45095-3
Online ISBN: 978-3-030-45096-0
eBook Packages: Computer ScienceComputer Science (R0)