Skip to main content

Ensemble Learning for Heartbeat Classification Using Adaptive Orthogonal Transformations

  • Conference paper
  • First Online:
Computer Aided Systems Theory – EUROCAST 2019 (EUROCAST 2019)

Abstract

In this work, we are focusing on the problem of heartbeat classification in electrocardiogram (ECG) signals. First we develop a patient-specific feature extraction scheme by using adaptive orthogonal transformations based on wavelets, B-splines, Hermite and rational functions. The so-called variable projection provides the general framework to find the optimal nonlinear parameters of these transformations. After extracting the features, we train a support vector machine (SVM) for each model whose outputs are combined via ensemble learning techniques. In the experiments, we achieved an accuracy of \(94.2\%\) on the PhysioNet MIT-BIH Arrhythmia Database that shows the potential of the proposed signal models in arrhythmia detection.

EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies – The Project is supported by the Hungarian Government and co-financed by the European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms. American National Standard, ANSI/AAMI/ISO EC57. 1998-(R) (2008)

    Google Scholar 

  2. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, 215–220 (2000)

    Google Scholar 

  3. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001)

    Article  Google Scholar 

  4. Gabbouj, M., Karczewicz, M.: ECG data compression by spline approximation. Signal Process. 59, 43–59 (1997)

    Article  Google Scholar 

  5. Kovács, P., Fekete, A.M.: Nonlinear least-squares spline fitting with variable knots. Appl. Math. Comput. 2019(354), 490–501 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Dózsa, T., Kovács, P.: ECG signal compression using adaptive hermite functions. In: Loshkovska, S., Koceski, S. (eds.) ICT Innovations 2015. AISC, vol. 399, pp. 245–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25733-4_25

    Chapter  Google Scholar 

  7. Fridli, S., Lócsi, L., Schipp, F.: Rational function systems in ECG processing. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6927, pp. 88–95. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27549-4_12

    Chapter  Google Scholar 

  8. Fridli, S., Kovács, P., Lócsi, L., Schipp, F.: Rational modeling of multi-lead QRS complexes in ECG signals. Ann. Univ. Sci. Budapest Sect. Comp. 37, 145–155 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Bognár, G., Fridli, S.: Heartbeat classification of ECG signals using rational function systems. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2017. LNCS, vol. 10672, pp. 187–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74727-9_22

    Chapter  Google Scholar 

  10. Golub, G.H., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10, 413–432 (1973)

    Article  MathSciNet  Google Scholar 

  11. Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59, 2930–2941 (2012)

    Article  Google Scholar 

  12. de Chazal, P., O’Dwyer, M., Reilly, B.R.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51, 1196–1206 (2004)

    Article  Google Scholar 

  13. Szegő, G.: Orthogonal Polynomials, 3rd edn. AMS Colloquium Publications, New York (1967)

    MATH  Google Scholar 

  14. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Machine Classification. National Taiwan University, pp. 1–16 (2016)

    Google Scholar 

  15. Llamendo, M., Khawaja, A., Martínez, J.P.: Cross-database evaluation of a multilead heartbeat classifier. IEEE Trans. Inf. Technol. Biomed. 16, 658–664 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Kovács .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dózsa, T., Bognár, G., Kovács, P. (2020). Ensemble Learning for Heartbeat Classification Using Adaptive Orthogonal Transformations. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12014. Springer, Cham. https://doi.org/10.1007/978-3-030-45096-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45096-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45095-3

  • Online ISBN: 978-3-030-45096-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics