Skip to main content

Role of Homeobox Genes in the Development of Pinus Sylvestris

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

Comprehensive gene expression profiling of homeobox gene family members allows to retrieve the role in Pinus sylvestris growth and development. Homeobox genes encode transcriptional factors playing important role in the development of organism. Homeodomains are common in a vast amount of species. Therefore, they can be identified even in non-model organisms. Understanding of homeobox genes functions supports the investigation of tissues development and yields the ways to regulate it. Homeobox genes are understudied for Scots pine. Hence, we assembled de novo transcriptome of Pinus sylvestris obtained from five tissues. The transcriptome comprises 775 502 transcripts. 243 homeobox-containing transcripts were found and DE analysis was carried out using these sequences. We have obtained 5 clusters of homeobox DE genes (visualized as a heatmap of gene expression). DE genes were annotated. The obtained results give some insights into the development of bud and mature tissues of Pinus sylvestris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viola, I.L., Gonzalez, D.H.: Structure and evolution of plant homeobox genes. In: Plant Transcription Factors, pp. 101–112. Elsevier (2016)

    Google Scholar 

  2. Nam, J., Nei, M.: Evolutionary change of the numbers of homeobox genes in bilateral animals. Mol. Biol. Evol. 22(12), 2386–2394 (2005)

    Article  CAS  Google Scholar 

  3. Gehring, W.J., Affolter, M., Bürglin, T.: Homeodomain proteins. Annu. Rev. Biochem. 63(1), 487–526 (1994)

    Article  CAS  Google Scholar 

  4. Mukherjee, K., Brocchieri, L., Bürglin, T.R.: A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 26(12), 2775–2794 (2009)

    Article  CAS  Google Scholar 

  5. Hedman, H., Zhu, T., von Arnold, S., Sohlberg, J.J.: Analysis of the WUSCHEL-related homeobox gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol. 13(1), 89 (2013). https://doi.org/10.1186/1471-2229-13-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palovaara, J., Hakman, I.: Conifer wox-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol. Biol. 66(5), 533–549 (2008). https://doi.org/10.1007/s11103-008-9289-5

    Article  CAS  PubMed  Google Scholar 

  7. Frelich, L.E.: Boreal and taiga biome (2019)

    Google Scholar 

  8. Farjon, A.: Pines: Drawings and Descriptions of the Genus Pinus. Brill, Leiden (2005)

    Google Scholar 

  9. Guo, M., Niu, X., Rupe, M., Schussler, J.: Down-regulation of a homeodomain-leucine zipper I-class homeobox gene for improved plant performance US Patent 9,677,084, 13 June 2017

    Google Scholar 

  10. Ramanathan, A., Srijaya, T.C., Sukumaran, P., Zain, R.B., Kasim, N.H.A.: Homeobox genes and tooth development: understanding the biological pathways and applications in regenerative dental science. Arch. Oral Biol. 85, 23–39 (2018)

    Article  CAS  Google Scholar 

  11. Bhattacharjee, A., Ghangal, R., Garg, R., Jain, M.: Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling. PLoS One 10(3), e0119198 (2015)

    Article  Google Scholar 

  12. Merino, I., Abrahamsson, M., Sterck, L., Craven-Bartle, B., Canovas, F., von Arnold, S.: Transcript profiling for early stages during embryo development in Scots pine. BMC Plant Biol. 16(1), 255 (2016). https://doi.org/10.1186/s12870-016-0939-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tandre, K., Svenson, M., Svensson, M.E., Engström, P.: Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 15(5), 615–623 (1998)

    Article  CAS  Google Scholar 

  14. Lim, K.J., et al.: Developmental changes in Scots pine transcriptome during heartwood formation. Plant Physiol. 172(3), 1403–1417 (2016)

    Article  CAS  Google Scholar 

  15. Lu, J., Vahala, J., Pappinen, A.: Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell, Tissue Organ Cult. (PCTOC) 107(1), 25 (2011). https://doi.org/10.1007/s11240-011-9952-4

    Article  CAS  Google Scholar 

  16. De Heredia, U.L., Vázquez-Poletti, J.L.: RNA-seq analysis in forest tree species: bioinformatic problems and solutions. Tree Genet. Genomes 12(2), 30 (2016). https://doi.org/10.1007/s11295-016-0995-x

    Article  Google Scholar 

  17. Ojeda, D.I., et al.: Utilization of tissue ploidy level variation in de novo transcriptome assembly of Pinus sylvestris. G3 Genes Genomes Genet. 9(10), 3409–3421 (2019)

    Google Scholar 

  18. Haas, B., et al.: De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat. Protoc. 8(8), 1494 (2013)

    Article  CAS  Google Scholar 

  19. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M.: BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 3210–3212 (2015)

    Article  Google Scholar 

  20. Finn, R.D., Clements, J., Eddy, S.R.: HMMER web server: interactive sequence similarity searching. Nucleic Acid Res. 39(suppl\(\_\)2), W29–W37 (2011)

    Google Scholar 

  21. Eddy, S.: HMMER user’s guide. Department of Genetics, Washington University School of Medicine 2(1), 13 (1992)

    Google Scholar 

  22. Bateman, A., et al.: The PFAM protein families database. Nucleic Acids Res. 32(suppl\(\_\)1), D138–D141 (2004)

    Google Scholar 

  23. Bairoch, A., et al.: The universal protein resource (UniProt). Nucleic Acids Res. 33(suppl\(\_\)1), D154–D159 (2005)

    Google Scholar 

  24. Elhiti, M., Stasolla, C.: Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal. Behav. 4(2), 86–88 (2009)

    Article  CAS  Google Scholar 

  25. Turchi, L., et al.: Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function. Development 140(10), 2118–2129 (2013)

    Article  CAS  Google Scholar 

  26. He, P., et al.: Comprehensive analysis of WOX genes uncovers that WOX13 is involved in phytohormone-mediated fiber development in cotton. BMC Plant Biol. 19(1), 312 (2019). https://doi.org/10.1186/s12870-019-1892-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chew, W., Hrmova, M., Lopato, S.: Role of homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors. Int. J. Mol. Sci. 14(4), 8122–8147 (2013)

    Article  Google Scholar 

  28. Palovaara, J., Hallberg, H., Stasolla, C., Hakman, I.: Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytol. 188(1), 122–135 (2010)

    Article  CAS  Google Scholar 

  29. Huang, Z., Meilan, R., Woeste, K.: A KNAT3-like homeobox gene from Juglans nigra L., JnKNAT3-like, highly expressed during heartwood formation. Plant Cell Rep. 28(11), 1717–1724 (2009). https://doi.org/10.1007/s00299-009-0771-6

    Article  CAS  PubMed  Google Scholar 

  30. Sharma, P., Lin, T., Grandellis, C., Yu, M., Hannapel, D.J.: The BEL1-like family of transcription factors in potato. J. Exp. Bot. 65(2), 709–723 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sadovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guseva, T., Biriukov, V., Sadovsky, M. (2020). Role of Homeobox Genes in the Development of Pinus Sylvestris. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics