Skip to main content

A Mini Review on Parallel Processing of Brain Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

Abstract

Parallel processing is an execution of processes that make computation and calculation on many things simultaneously. In addition, parallel processing methods are applied extensively to the examination of MR imaging in treatment. As parallel computer systems become larger and faster at the present time; scientists, researchers and engineers are eventually able to find solutions to the problems in medicine, which had been taken too long to run before. Therefore, various fields including medicine and bioinformatics have already taken the advantages of parallel processing. In this review study, we deal with analyzing key concepts and eminent parallel processing methods that have been used to analyze the brain MRI images. In addition to this, we indicate great number of examples from the current literature in a comprehensive literature matrix. Based on the literature matrix that is created according to the Web of Science analysis, information graphics are presented in a comprehensive manner. As a result, parallel processing methods in brain magnetic resonance imaging offer powerful replacements to computer clusters in order to run large, disseminated solicitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Samsonov, A.A.: On optimality of parallel MRI reconstruction in k-space. Magn. Reson. Med. 59(1), 156–164 (2008). https://doi.org/10.1002/mrm.21466

    Article  PubMed  Google Scholar 

  2. Kubicek, J., et al.: Autonomous segmentation and modeling of brain pathological findings based on iterative segmentation from MR images. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 324–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_28

    Chapter  Google Scholar 

  3. Kubicek, J., et al.: Design and analysis of LMMSE filter for MR image data. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 336–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_29

    Chapter  Google Scholar 

  4. Kalaiselvi, T., Sriramakrishnan, P., Somasundaram, K.: Survey of using GPU CUDA programming model in medical image analysis. Inform. Med. Unlocked 9, 133–144 (2017). https://doi.org/10.1016/j.imu.2017.08.001

    Article  Google Scholar 

  5. Cerna, L., Maresova, P.: Modern technologies in diabetes treatment. J. Eng. Appl. Sci. 11(7), 1475–1479 (2016). https://doi.org/10.3923/jeasci.2016.1475.1479

    Article  Google Scholar 

  6. Bužga, M., Maresova, P., Seidlerova, A., Zonča, P., Holéczy, P., Kuča, K.: The influence of methods of bariatric surgery for treatment of type 2 diabetes mellitus. Ther. Clin. Risk Manag. 12, 599–605 (2016). https://doi.org/10.2147/tcrm.s96593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cimler, R., Maresova, P., Kuhnova, J., Kuca, K.: Predictions of Alzheimer’s disease treatment and care costs in European countries. PLoS ONE 14(1) (2019). https://doi.org/10.1371/journal.pone.0210958

  8. South-Paul, J.E., Matheny, S.C., Lewis, E.L.: Current Diagnosis & Treatment in Family Medicine, 3rd edn. McGraw-Hill Medical, New York (2011)

    Google Scholar 

  9. Rodger, J.A.: Discovery of medical Big Data analytics: improving the prediction of traumatic brain injury survival rates by data mining Patient Informatics Processing Software Hybrid Hadoop Hive. Inform. Med. Unlocked 1, 17–26 (2015). https://doi.org/10.1016/j.imu.2016.01.002

    Article  Google Scholar 

  10. Hamilton, L.H., et al.: “PINOT”: time-resolved parallel magnetic resonance imaging with a reduced dynamic field of view. Magn. Reson. Med. 65(4), 1062–1074 (2011). https://doi.org/10.1002/mrm.22696

    Article  PubMed  Google Scholar 

  11. Brau, A.C.S., Beatty, P.J., Skare, S., Bammer, R.: Comparison of reconstruction accuracy and efficiency among autocalibrating data-driven parallel imaging methods. Magn. Reson. Med. 59(2), 382–395 (2008). https://doi.org/10.1002/mrm.21481

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46(4), 638–651 (2001). https://doi.org/10.1002/mrm.1241. SENSE with Arbitrary k-Space Trajectories

    Article  CAS  PubMed  Google Scholar 

  13. Griswold, M.A., Jakob, P.M., Nittka, M., Goldfarb, J.W., Haase, A.: Partially parallel imaging with localized sensitivities (PILS). Magn. Reson. Med.44(4), 602–609 (2000). https://doi.org/10.1002/1522-2594(200010)44:4<602::aid-mrm14>3.0.co;2-5. https://www.researchgate.net/publication/12297882_Partially_parallel_imaging_with_localized_ sensitivities_PILS. PMID: 11025516

    Article  Google Scholar 

  14. Ramani, S., Fessler, J.A.: Parallel MR image reconstruction using augmented Lagrangian methods. IEEE Trans. Med. Imaging 30(3), 694–706 (2011). https://doi.org/10.1109/tmi.2010.2093536

    Article  PubMed  Google Scholar 

  15. Bohlhalter, S.: Hierarchical versus parallel processing in tactile object recognition: a behavioural-neuroanatomical study of aperceptive tactile agnosia. Brain 125(11), 2537–2548 (2002). https://doi.org/10.1093/brain/awf245

    Article  CAS  PubMed  Google Scholar 

  16. Ye, X., Chen, Y., Lin, W., Huang, F.: Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories. IEEE Trans. Med. Imaging 30(3), 575–585 (2011). https://doi.org/10.1109/tmi.2010.2088133

    Article  PubMed  Google Scholar 

  17. Maresova, P., et al.: Consequences of industry 4.0 in business and economics. Economies 6(3), 46 (2018). https://doi.org/10.3390/economies6030046

    Article  Google Scholar 

  18. Lustig, M., Pauly, J.M.: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. (2010). https://doi.org/10.1002/mrm.22428

  19. Rauschecker, J.P.: Parallel processing in the auditory cortex of primates. Audiol. Neurotol. 3(2–3), 86–103 (1998). https://doi.org/10.1159/000013784

    Article  CAS  Google Scholar 

  20. Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI pipeline processing environment. NeuroImage 19(3), 1033–1048 (2003). https://doi.org/10.1016/s1053-8119(03)00185-x

    Article  PubMed  Google Scholar 

  21. Sigman, M., Dehaene, S.: Brain mechanisms of serial and parallel processing during dual-task performance. J. Neurosci. 28(30), 7585–7598 (2008). https://doi.org/10.1523/jneurosci.0948-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weissman, D.H., Giesbrecht, B., Song, A.W., Mangun, G.R., Woldorff, M.G.: Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage 19(4), 1361–1368 (2003). https://doi.org/10.1016/s1053-8119(03)00167-8

    Article  CAS  PubMed  Google Scholar 

  23. Aja-Fernández, S., Tristán-Vega, A., Hoge, W.S.: Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model. Magn. Reson. Med. 65(4), 1195–1206 (2011). https://doi.org/10.1002/mrm.22701

    Article  PubMed  Google Scholar 

  24. Hernández, M., et al.: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs. PLOS One 8(4), e61892 (2013)

    Article  Google Scholar 

  25. Soltanian-Zadeh, H., Windham, J.P., Yagle, A.E.: A multidimensional nonlinear edge-preserving filter for magnetic resonance image restoration. IEEE Trans. Image Process. 4(2), 147–161 (1995). https://doi.org/10.1109/83.342189

    Article  CAS  PubMed  Google Scholar 

  26. Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images. Comput. Methods Programs Biomed. 99(2), 133–146 (2010). https://doi.org/10.1016/j.cmpb.2009.11.004

    Article  PubMed  Google Scholar 

  27. Huang, F., et al.: A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE. Magn. Reson. Med. 64(4), 1078–1088 (2010). https://doi.org/10.1002/mrm.22504

    Article  PubMed  Google Scholar 

  28. Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs. Front. Neuroinform. 8 (2014). https://doi.org/10.3389/fninf.2014.00024

  29. Gathmann, B., et al.: Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk. Exp. Brain Res. 232(3), 957–973 (2014). https://doi.org/10.1007/s00221-013-3808-6

    Article  PubMed  Google Scholar 

  30. Engström, M., Skare, S.: Diffusion-weighted 3D multislab echo planar imaging for high signal-to-noise ratio efficiency and isotropic image resolution. Magn. Reson. Med. 70(6), 1507–1514 (2013). https://doi.org/10.1002/mrm.24594. Diffusion-Weighted 3DMS-EPI

    Article  PubMed  Google Scholar 

  31. Fink, G.R., et al.: Deriving numerosity and shape from identical visual displays. NeuroImage 13(1), 46–55 (2001). https://doi.org/10.1006/nimg.2000.0673

    Article  CAS  PubMed  Google Scholar 

  32. Chen, C., Li, Y., Huang, J.: Calibrationless parallel MRI with joint total variation regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 106–114. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_14

    Chapter  Google Scholar 

  33. Helmchen, C., Mohr, C., Erdmann, C., Binkofski, F., Büchel, C.: Neural activity related to self-versus externally generated painful stimuli reveals distinct differences in the lateral pain system in a parametric fMRI study. Hum. Brain Mapp. 27(9), 755–765 (2006). https://doi.org/10.1002/hbm.20217

    Article  PubMed  Google Scholar 

  34. Posse, S., Otazo, R., Tsai, S.-Y., Yoshimoto, A.E., Lin, F.-H.: Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging. Magn. Reson. Med. 61(3), 541–547 (2009). https://doi.org/10.1002/mrm.21855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gai, J., et al.: More IMPATIENT: a gridding-accelerated Toeplitz-based strategy for non-Cartesian high-resolution 3D MRI on GPUs. J. Parallel Distrib. Comput. 73(5), 686–697 (2013). https://doi.org/10.1016/j.jpdc.2013.01.001

    Article  PubMed  Google Scholar 

  36. Cummine, J., et al.: Manipulating instructions strategically affects reliance on the ventral-lexical reading stream: converging evidence from neuroimaging and reaction time. Brain Lang. 125(2), 203–214 (2013). https://doi.org/10.1016/j.bandl.2012.04.009

    Article  PubMed  Google Scholar 

  37. Trzasko, J.D., Manduca, A.: Calibrationless parallel MRI using CLEAR. In: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, pp. 75–79 (2011). https://doi.org/10.1109/acssc.2011.6189958

  38. Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017). https://doi.org/10.1002/mp.12600

    Article  PubMed  Google Scholar 

  39. Trzasko, J., Haider, C., Manduca, A.: Practical nonconvex compressive sensing reconstruction of highly-accelerated 3D parallel MR angiograms. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, pp. 274–277 (2009). https://doi.org/10.1109/isbi.2009.5193037

  40. Oguri, T., et al.: Overlapping connections within the motor cortico-basal ganglia circuit: fMRI-tractography analysis. NeuroImage 78, 353–362 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.026

    Article  PubMed  Google Scholar 

  41. Chen, Z., Zhang, J., Yang, R., Kellman, P., Johnston, L.A., Egan, G.F.: IIR GRAPPA for parallel MR image reconstruction. Magn. Reson. Med. 63(2), 502–509 (2010). https://doi.org/10.1002/mrm.22197

    Article  PubMed  Google Scholar 

  42. Lapeer, R.J., Shah, S.K., Rowland, R.S.: An optimised radial basis function algorithm for fast non-rigid registration of medical images. Comput. Biol. Med. 40(1), 1–7 (2010). https://doi.org/10.1016/j.compbiomed.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  43. Zhilkin, P., Alexander, M.E.: 3D image registration using a fast noniterative algorithm. Magn. Reson. Imaging 18(9), 1143–1150 (2000). https://doi.org/10.1016/s0730-725x(00)00209-5

    Article  CAS  PubMed  Google Scholar 

  44. Schulte, T., Chen, S.H.A., Müller-Oehring, E.M., Adalsteinsson, E., Pfefferbaum, A., Sullivan, E.V.: fMRI evidence for individual differences in premotor modulation of extrastriatal visual–perceptual processing of redundant targets. NeuroImage 30(3), 973–982 (2006). https://doi.org/10.1016/j.neuroimage.2005.10.023

    Article  CAS  PubMed  Google Scholar 

  45. De, A., Zhang, Y., Guo, C.: A parallel adaptive segmentation method based on SOM and GPU with application to MRI image processing. Neurocomputing 198, 180–189 (2016). https://doi.org/10.1016/j.neucom.2015.10.129

    Article  Google Scholar 

  46. Freiberger, M., Knoll, F., Bredies, K., Scharfetter, H., Stollberger, R.: The agile library for biomedical image reconstruction using GPU acceleration. Comput. Sci. Eng. 15(1), 34–44 (2013). https://doi.org/10.1109/mcse.2012.40

    Article  CAS  Google Scholar 

  47. Ding, W., Lin, C.-T., Chen, S., Zhang, X., Hu, B.: Multiagent-consensus-MapReduce-based attribute reduction using co-evolutionary quantum PSO for big data applications. Neurocomputing 272, 136–153 (2018). https://doi.org/10.1016/j.neucom.2017.06.059

    Article  Google Scholar 

  48. Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: GPU-accelerated elastic 3D image registration for intra-surgical applications. Comput. Methods Programs Biomed. 103(2), 104–112 (2011). https://doi.org/10.1016/j.cmpb.2010.08.014

    Article  PubMed  Google Scholar 

  49. Minati, L.: Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l1-norm as approximation of Pearson’s temporal correlation: proof-of-concept and example vector hardware implementation. Med. Eng. 36, 1212–1217 (2014)

    Article  Google Scholar 

  50. Lee, D., Yoo, J., Tak, S., Ye, J.C.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018). https://doi.org/10.1109/tbme.2018.2821699

    Article  PubMed  Google Scholar 

  51. Lin, W., Börnert, P., Huang, F., Duensing, G.R., Reykowski, A.: Generalized GRAPPA operators for wider spiral bands: rapid self-calibrated parallel reconstruction for variable density spiral MRI. Magn. Reson. Med. 66(4), 1067–1078 (2011). https://doi.org/10.1002/mrm.22900. Generalized GRAPPA Operator for Wider Spiral Bands (GROWL)

    Article  PubMed  Google Scholar 

  52. Xu, L., Feng, Y., Liu, X., Kang, L., Chen, W.: Robust GRAPPA reconstruction using sparse multi-kernel learning with least squares support vector regression. Magn. Reson. Imaging 32(1), 91–101 (2014). https://doi.org/10.1016/j.mri.2013.10.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Krejcar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirimtat, A., Krejcar, O., Dolezal, R., Selamat, A. (2020). A Mini Review on Parallel Processing of Brain Magnetic Resonance Imaging. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics