Abstract
Parallel processing is an execution of processes that make computation and calculation on many things simultaneously. In addition, parallel processing methods are applied extensively to the examination of MR imaging in treatment. As parallel computer systems become larger and faster at the present time; scientists, researchers and engineers are eventually able to find solutions to the problems in medicine, which had been taken too long to run before. Therefore, various fields including medicine and bioinformatics have already taken the advantages of parallel processing. In this review study, we deal with analyzing key concepts and eminent parallel processing methods that have been used to analyze the brain MRI images. In addition to this, we indicate great number of examples from the current literature in a comprehensive literature matrix. Based on the literature matrix that is created according to the Web of Science analysis, information graphics are presented in a comprehensive manner. As a result, parallel processing methods in brain magnetic resonance imaging offer powerful replacements to computer clusters in order to run large, disseminated solicitations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Samsonov, A.A.: On optimality of parallel MRI reconstruction in k-space. Magn. Reson. Med. 59(1), 156–164 (2008). https://doi.org/10.1002/mrm.21466
Kubicek, J., et al.: Autonomous segmentation and modeling of brain pathological findings based on iterative segmentation from MR images. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 324–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_28
Kubicek, J., et al.: Design and analysis of LMMSE filter for MR image data. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 336–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_29
Kalaiselvi, T., Sriramakrishnan, P., Somasundaram, K.: Survey of using GPU CUDA programming model in medical image analysis. Inform. Med. Unlocked 9, 133–144 (2017). https://doi.org/10.1016/j.imu.2017.08.001
Cerna, L., Maresova, P.: Modern technologies in diabetes treatment. J. Eng. Appl. Sci. 11(7), 1475–1479 (2016). https://doi.org/10.3923/jeasci.2016.1475.1479
Bužga, M., Maresova, P., Seidlerova, A., Zonča, P., Holéczy, P., Kuča, K.: The influence of methods of bariatric surgery for treatment of type 2 diabetes mellitus. Ther. Clin. Risk Manag. 12, 599–605 (2016). https://doi.org/10.2147/tcrm.s96593
Cimler, R., Maresova, P., Kuhnova, J., Kuca, K.: Predictions of Alzheimer’s disease treatment and care costs in European countries. PLoS ONE 14(1) (2019). https://doi.org/10.1371/journal.pone.0210958
South-Paul, J.E., Matheny, S.C., Lewis, E.L.: Current Diagnosis & Treatment in Family Medicine, 3rd edn. McGraw-Hill Medical, New York (2011)
Rodger, J.A.: Discovery of medical Big Data analytics: improving the prediction of traumatic brain injury survival rates by data mining Patient Informatics Processing Software Hybrid Hadoop Hive. Inform. Med. Unlocked 1, 17–26 (2015). https://doi.org/10.1016/j.imu.2016.01.002
Hamilton, L.H., et al.: “PINOT”: time-resolved parallel magnetic resonance imaging with a reduced dynamic field of view. Magn. Reson. Med. 65(4), 1062–1074 (2011). https://doi.org/10.1002/mrm.22696
Brau, A.C.S., Beatty, P.J., Skare, S., Bammer, R.: Comparison of reconstruction accuracy and efficiency among autocalibrating data-driven parallel imaging methods. Magn. Reson. Med. 59(2), 382–395 (2008). https://doi.org/10.1002/mrm.21481
Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46(4), 638–651 (2001). https://doi.org/10.1002/mrm.1241. SENSE with Arbitrary k-Space Trajectories
Griswold, M.A., Jakob, P.M., Nittka, M., Goldfarb, J.W., Haase, A.: Partially parallel imaging with localized sensitivities (PILS). Magn. Reson. Med.44(4), 602–609 (2000). https://doi.org/10.1002/1522-2594(200010)44:4<602::aid-mrm14>3.0.co;2-5. https://www.researchgate.net/publication/12297882_Partially_parallel_imaging_with_localized_ sensitivities_PILS. PMID: 11025516
Ramani, S., Fessler, J.A.: Parallel MR image reconstruction using augmented Lagrangian methods. IEEE Trans. Med. Imaging 30(3), 694–706 (2011). https://doi.org/10.1109/tmi.2010.2093536
Bohlhalter, S.: Hierarchical versus parallel processing in tactile object recognition: a behavioural-neuroanatomical study of aperceptive tactile agnosia. Brain 125(11), 2537–2548 (2002). https://doi.org/10.1093/brain/awf245
Ye, X., Chen, Y., Lin, W., Huang, F.: Fast MR image reconstruction for partially parallel imaging with arbitrary k-space trajectories. IEEE Trans. Med. Imaging 30(3), 575–585 (2011). https://doi.org/10.1109/tmi.2010.2088133
Maresova, P., et al.: Consequences of industry 4.0 in business and economics. Economies 6(3), 46 (2018). https://doi.org/10.3390/economies6030046
Lustig, M., Pauly, J.M.: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. (2010). https://doi.org/10.1002/mrm.22428
Rauschecker, J.P.: Parallel processing in the auditory cortex of primates. Audiol. Neurotol. 3(2–3), 86–103 (1998). https://doi.org/10.1159/000013784
Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI pipeline processing environment. NeuroImage 19(3), 1033–1048 (2003). https://doi.org/10.1016/s1053-8119(03)00185-x
Sigman, M., Dehaene, S.: Brain mechanisms of serial and parallel processing during dual-task performance. J. Neurosci. 28(30), 7585–7598 (2008). https://doi.org/10.1523/jneurosci.0948-08.2008
Weissman, D.H., Giesbrecht, B., Song, A.W., Mangun, G.R., Woldorff, M.G.: Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. NeuroImage 19(4), 1361–1368 (2003). https://doi.org/10.1016/s1053-8119(03)00167-8
Aja-Fernández, S., Tristán-Vega, A., Hoge, W.S.: Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model. Magn. Reson. Med. 65(4), 1195–1206 (2011). https://doi.org/10.1002/mrm.22701
Hernández, M., et al.: Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs. PLOS One 8(4), e61892 (2013)
Soltanian-Zadeh, H., Windham, J.P., Yagle, A.E.: A multidimensional nonlinear edge-preserving filter for magnetic resonance image restoration. IEEE Trans. Image Process. 4(2), 147–161 (1995). https://doi.org/10.1109/83.342189
Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: Parallel computation of mutual information on the GPU with application to real-time registration of 3D medical images. Comput. Methods Programs Biomed. 99(2), 133–146 (2010). https://doi.org/10.1016/j.cmpb.2009.11.004
Huang, F., et al.: A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE. Magn. Reson. Med. 64(4), 1078–1088 (2010). https://doi.org/10.1002/mrm.22504
Eklund, A., Dufort, P., Villani, M., LaConte, S.: BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs. Front. Neuroinform. 8 (2014). https://doi.org/10.3389/fninf.2014.00024
Gathmann, B., et al.: Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk. Exp. Brain Res. 232(3), 957–973 (2014). https://doi.org/10.1007/s00221-013-3808-6
Engström, M., Skare, S.: Diffusion-weighted 3D multislab echo planar imaging for high signal-to-noise ratio efficiency and isotropic image resolution. Magn. Reson. Med. 70(6), 1507–1514 (2013). https://doi.org/10.1002/mrm.24594. Diffusion-Weighted 3DMS-EPI
Fink, G.R., et al.: Deriving numerosity and shape from identical visual displays. NeuroImage 13(1), 46–55 (2001). https://doi.org/10.1006/nimg.2000.0673
Chen, C., Li, Y., Huang, J.: Calibrationless parallel MRI with joint total variation regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 106–114. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_14
Helmchen, C., Mohr, C., Erdmann, C., Binkofski, F., Büchel, C.: Neural activity related to self-versus externally generated painful stimuli reveals distinct differences in the lateral pain system in a parametric fMRI study. Hum. Brain Mapp. 27(9), 755–765 (2006). https://doi.org/10.1002/hbm.20217
Posse, S., Otazo, R., Tsai, S.-Y., Yoshimoto, A.E., Lin, F.-H.: Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging. Magn. Reson. Med. 61(3), 541–547 (2009). https://doi.org/10.1002/mrm.21855
Gai, J., et al.: More IMPATIENT: a gridding-accelerated Toeplitz-based strategy for non-Cartesian high-resolution 3D MRI on GPUs. J. Parallel Distrib. Comput. 73(5), 686–697 (2013). https://doi.org/10.1016/j.jpdc.2013.01.001
Cummine, J., et al.: Manipulating instructions strategically affects reliance on the ventral-lexical reading stream: converging evidence from neuroimaging and reaction time. Brain Lang. 125(2), 203–214 (2013). https://doi.org/10.1016/j.bandl.2012.04.009
Trzasko, J.D., Manduca, A.: Calibrationless parallel MRI using CLEAR. In: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, pp. 75–79 (2011). https://doi.org/10.1109/acssc.2011.6189958
Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017). https://doi.org/10.1002/mp.12600
Trzasko, J., Haider, C., Manduca, A.: Practical nonconvex compressive sensing reconstruction of highly-accelerated 3D parallel MR angiograms. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, pp. 274–277 (2009). https://doi.org/10.1109/isbi.2009.5193037
Oguri, T., et al.: Overlapping connections within the motor cortico-basal ganglia circuit: fMRI-tractography analysis. NeuroImage 78, 353–362 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.026
Chen, Z., Zhang, J., Yang, R., Kellman, P., Johnston, L.A., Egan, G.F.: IIR GRAPPA for parallel MR image reconstruction. Magn. Reson. Med. 63(2), 502–509 (2010). https://doi.org/10.1002/mrm.22197
Lapeer, R.J., Shah, S.K., Rowland, R.S.: An optimised radial basis function algorithm for fast non-rigid registration of medical images. Comput. Biol. Med. 40(1), 1–7 (2010). https://doi.org/10.1016/j.compbiomed.2009.10.002
Zhilkin, P., Alexander, M.E.: 3D image registration using a fast noniterative algorithm. Magn. Reson. Imaging 18(9), 1143–1150 (2000). https://doi.org/10.1016/s0730-725x(00)00209-5
Schulte, T., Chen, S.H.A., Müller-Oehring, E.M., Adalsteinsson, E., Pfefferbaum, A., Sullivan, E.V.: fMRI evidence for individual differences in premotor modulation of extrastriatal visual–perceptual processing of redundant targets. NeuroImage 30(3), 973–982 (2006). https://doi.org/10.1016/j.neuroimage.2005.10.023
De, A., Zhang, Y., Guo, C.: A parallel adaptive segmentation method based on SOM and GPU with application to MRI image processing. Neurocomputing 198, 180–189 (2016). https://doi.org/10.1016/j.neucom.2015.10.129
Freiberger, M., Knoll, F., Bredies, K., Scharfetter, H., Stollberger, R.: The agile library for biomedical image reconstruction using GPU acceleration. Comput. Sci. Eng. 15(1), 34–44 (2013). https://doi.org/10.1109/mcse.2012.40
Ding, W., Lin, C.-T., Chen, S., Zhang, X., Hu, B.: Multiagent-consensus-MapReduce-based attribute reduction using co-evolutionary quantum PSO for big data applications. Neurocomputing 272, 136–153 (2018). https://doi.org/10.1016/j.neucom.2017.06.059
Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: GPU-accelerated elastic 3D image registration for intra-surgical applications. Comput. Methods Programs Biomed. 103(2), 104–112 (2011). https://doi.org/10.1016/j.cmpb.2010.08.014
Minati, L.: Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l1-norm as approximation of Pearson’s temporal correlation: proof-of-concept and example vector hardware implementation. Med. Eng. 36, 1212–1217 (2014)
Lee, D., Yoo, J., Tak, S., Ye, J.C.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018). https://doi.org/10.1109/tbme.2018.2821699
Lin, W., Börnert, P., Huang, F., Duensing, G.R., Reykowski, A.: Generalized GRAPPA operators for wider spiral bands: rapid self-calibrated parallel reconstruction for variable density spiral MRI. Magn. Reson. Med. 66(4), 1067–1078 (2011). https://doi.org/10.1002/mrm.22900. Generalized GRAPPA Operator for Wider Spiral Bands (GROWL)
Xu, L., Feng, Y., Liu, X., Kang, L., Chen, W.: Robust GRAPPA reconstruction using sparse multi-kernel learning with least squares support vector regression. Magn. Reson. Imaging 32(1), 91–101 (2014). https://doi.org/10.1016/j.mri.2013.10.001
Acknowledgement
The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kirimtat, A., Krejcar, O., Dolezal, R., Selamat, A. (2020). A Mini Review on Parallel Processing of Brain Magnetic Resonance Imaging. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-45385-5_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45384-8
Online ISBN: 978-3-030-45385-5
eBook Packages: Computer ScienceComputer Science (R0)