Skip to main content

Network-Based Variable Selection for Survival Outcomes in Oncological Data

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

The accessibility to “big data” sets down an ambitious challenge in the medical field, especially in personalized medicine, where gene expression data are increasingly being used to establish a diagnosis and optimize treatment of oncological patients. However, the high-dimensionality nature of the data brings many constraints, for which several approaches have been considered, with regularization techniques in the cutting-edge research front. Additionally, the network structure of gene expression data has fostered the development of network-based regularization techniques to convey data into a low-dimensional and interpretable level. In this work, classical elastic net and two recently proposed network-based methods, HubCox and OrphanCox, are applied to high-dimensional gene expression data, to model survival data. An oncological transcriptomic dataset obtained from The Cancer Genome Atlas (TCGA) is used, with patients’ RNA-seq measurements as covariates. The application of sparsity-inducing techniques to the dataset enabled the selection of relevant genes over a range of parameters evaluated. Comparable results were obtained for the elastic net and the network-based OrphanCox regarding model performance and genes selected.

Partially funded by H2020 (No. 633974) and the Portuguese Foundation for Science & Technology FCT (UIDB/00297/2020, UIDB/04516/2020, UIDB/50021/2020, UIDB/50022/2020, PTDC/CCI-CIF/29877/2017, PTDC/CCI-INF/29168/2017 and SFRH/BD/97415/2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoude, L.G., et al.: Pole mutations in families predisposed to cutaneous melanoma. Fam. Cancer 14(4), 621–628 (2015). https://doi.org/10.1007/s10689-015-9826-8

    Article  CAS  PubMed  Google Scholar 

  2. Baker, S., et al.: Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics 33(24), 3973–3981 (2017). https://doi.org/10.1093/bioinformatics/btx454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc. Ser. B (Methodol.) 34(2), 187–220 (1972). http://www.jstor.org/stable/2985181

    Google Scholar 

  4. Degenhardt, Y., et al.: Distinct MHC gene expression patterns during progression of melanoma. Genes Chromosom. Cancer 49(2), 144–154 (2010). https://doi.org/10.1002/gcc.20728. https://onlinelibrary.wiley.com/doi/abs/10.1002/gcc.20728

    Article  CAS  PubMed  Google Scholar 

  5. El-Wahab, N., et al.: Glypican-3 and melanoma antigen genes 1 and 3 as tumor markers for hepatocellular carcinoma. Egypt. J. Immunol. 24(2), 187–200 (2017)

    PubMed  Google Scholar 

  6. Nieminen, J.: On the centrality in a graph. Scand. J. Psychol. 15(1), 332–336 (1974). https://doi.org/10.1111/j.1467-9450.1974.tb00598.x. http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9450.1974.tb00598.x/abstract

    Article  CAS  PubMed  Google Scholar 

  7. Peto, R., Peto, J.: Asymptotically efficient rank invariant test procedures. J. Roy. Stat. Soc. Ser. A (Gen.) 135(2), 185–207 (1972). http://www.jstor.org/stable/2344317

    Article  Google Scholar 

  8. Planelles, D., et al.: HLA class II polymorphisms in Spanish melanoma patients: homozygosity for HLA-DQA1 locus can be a potential melanoma risk factor. Br. J. Dermatol. 154(2), 261–266 (2006). https://doi.org/10.1111/j.1365-2133.2005.06896.x. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2133.2005.06896.x

    Article  CAS  PubMed  Google Scholar 

  9. Team, R.C.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012). http://www.R-project.org/

  10. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    Google Scholar 

  11. Veríssimo, A., Carrasquinha, E., Lopes, M., Oliveira, A., Sagot, M.F., Vinga, S.: Sparse network-based regularization for the analysis of patientomics high-dimensional survival data. bioRxiv (2018). https://doi.org/10.1101/403402

  12. Veríssimo, A., Carrasquinha, E., Lopes, M.B., Vinga, S.: glmSparseNet - network centrality metrics for elastic-net regularized models. Bioconductor (2018). https://bioconductor.org/packages/release/bioc/html/glmSparseNet.html

  13. Veríssimo, A., Oliveira, A.L., Sagot, M.F., Vinga, S.: DegreeCox - a network-based regularization method for survival analysis. BMC Bioinformatics 17(16), 449 (2016). https://doi.org/10.1186/s12859-016-1310-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu, N., Shin, S., Choi, J., Kim, Y., Lee, K.: Concomitant AID expression and BCL7A loss associates with accelerated phase progression and imatinib resistance in chronic myeloid leukemia. Ann. Lab. Med. 37(2), 177–179 (2017). https://doi.org/10.3343/alm.2017.37.2.177

    Article  PubMed  Google Scholar 

  15. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B 67(2), 301–320 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunice Carrasquinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carrasquinha, E., Veríssimo, A., Lopes, M.B., Vinga, S. (2020). Network-Based Variable Selection for Survival Outcomes in Oncological Data. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics