Abstract
Medical image processing is a highly challenging research area, thus medical imaging techniques are used to make diagnosis in human body. Moreover, as tumor in the brain is a critical and medical complaint, segmentation of the images has an important role to make segmentation of the brain tumor and it provides suspicious region diagnosis from the medical images. By the help of MRI scanners, signals generated by the human body tissues could be detected and determined spatially. Thus, we in this paper try to propose basics of MRI image modalities as a guide for understanding the processes and methods. Since original brain image is not appropriate for the examination, segmentation of the images could be very useful method for partition of the digital image into similar regions. This research also presents a guide for understanding the brain MRI sequences in other words modalities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kubicek, J., et al.: Design and analysis of LMMSE filter for MR image data. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 336–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_29
Stankiewicz, J.M., et al.: Brain MRI lesion load at 1.5T and 3T versus clinical status in multiple sclerosis. J. Neuroimaging 21(2), e50–e56 (2011). https://doi.org/10.1111/j.1552-6569.2009.00449.x
Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33(3), 261–274 (2010). https://doi.org/10.1007/s10462-010-9155-0
Alpar, O., Krejcar, O.: A comparative study on chrominance based methods in dorsal hand recognition: single image case. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds.) IEA/AIE 2018. LNCS (LNAI), vol. 10868, pp. 711–721. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92058-0_68
Alpar, O., Krejcar, O.: Quantization and equalization of pseudocolor images in hand thermography. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2017. LNCS, vol. 10208, pp. 397–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56148-6_35
Chang, P.-L., Teng, W.-G.: Exploiting the self-organizing map for medical image segmentation. Presented at the Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS 2007), Maribor, Slovenia (2007). https://doi.org/10.1109/CBMS.2007.48
Marek, T., Krejcar, O., Selamat, A.: Possibilities for development and use of 3D applications on the android platform. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9622, pp. 519–529. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49390-8_51
Novotny, J., Dvorak, J., Krejcar, O.: User based intelligent adaptation of five in a row game for android based on the data from the front camera. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 133–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40621-3_9
Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans. Neural Netw. 3, 672–682 (1992)
Kubicek, J., et al.: Autonomous segmentation and modeling of brain pathological findings based on iterative segmentation from MR images. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 324–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_28
Alpar, O., Krejcar, O.: Thermal imaging for localization of anterior forearm subcutaneous veins. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 243–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_23
Dolezal, R., et al.: Variable elimination approaches for data-noise reduction in 3D QSAR calculations. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 313–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_33
Filippi, M., et al.: Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain 142(7), 1858–1875 (2019). https://doi.org/10.1093/brain/awz144
Samuel, T., Assefa, D., Krejcar, O.: Framework for effective image processing to enhance tuberculosis diagnosis. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 376–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_36
Kunes, M., et al.: Imaging and evaluating method as part of endoscopical diagnostic approaches. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8398, pp. 605–614. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05458-2_62
Loizou, C.P., et al.: Brain image and lesions registration and 3D reconstruction in DICOM MRI images. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, pp. 419–422 (2017). https://doi.org/10.1109/CBMS.2017.53
Qiao, J., et al.: Data on MRI brain lesion segmentation using K-means and Gaussian mixture model-expectation maximization. Data Brief 27, 104628 (2019). https://doi.org/10.1016/j.dib.2019.104628
Xue, Y., et al.: A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images. NeuroImage Clin. 25, 102118 (2020). https://doi.org/10.1016/j.nicl.2019.102118
Mohr, D.C., et al.: Psychological stress and the subsequent appearance of new brain MRI lesions in MS. Neurology 55(1), 55–61 (2000). https://doi.org/10.1212/WNL.55.1.55
Preston, D.C.: Magnetic resonance imaging (MRI) of the brain and spine: basics. Magnetic Resonance Imaging (MRI) of the Brain and Spine: Basics (2006). https://casemed.case.edu/clerkships/neurology/Web%20Neurorad/MRI%20Basics.htm. Accessed 04 Jan 2020
Usman, K., Rajpoot, K.: Brain tumor classification from multi-modality MRI using wavelets and machine learning. Patt. Anal. Appl. 20(3), 871–881 (2017). https://doi.org/10.1007/s10044-017-0597-8
Novozámský, A., Flusser, J., TachecÃ, I., SulÃk, L., BureÅ¡, J., Krejcar, O.: Automatic blood detection in capsule endoscopy video. J. Biomed. Opt. 21(12) (2016). https://doi.org/10.1117/1.jbo.21.12.126007
Chen, X., et al.: A prediction model of brain edema after endovascular treatment in patients with acute ischemic stroke. J. Neurol. Sci. 407, 116507 (2019). https://doi.org/10.1016/j.jns.2019.116507
Nakano, T., et al.: Goreisan prevents brain edema after cerebral ischemic stroke by inhibiting Aquaporin 4 upregulation in mice. J. Stroke Cerebrovasc. Dis. 27(3), 758–763 (2018). https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.10.010
Acknowledgement
This work is partially supported by the project of SPEV 2020, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-SPEV-2020) and project of the Ministry of Education, Youth and Sports of Czech Republic (project ERDF no. CZ.02.1.01/0.0/0.0/18_069/0010054).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kirimtat, A., Krejcar, O., Selamat, A. (2020). Brain MRI Modality Understanding: A Guide for Image Processing and Segmentation. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_63
Download citation
DOI: https://doi.org/10.1007/978-3-030-45385-5_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45384-8
Online ISBN: 978-3-030-45385-5
eBook Packages: Computer ScienceComputer Science (R0)