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Abstract. Query Auto-completion (QAC) is a prominently used fea-
ture in search engines, where user interaction with such explicit feature
is facilitated by the possible automatic suggestion of queries based on
a prefix typed by the user. Existing QAC models have pursued a little
on user interaction and cannot capture a user’s information need (IN)
context. In this work, we devise a new task of QAC applied on an image
for estimating patch (one of the key components of Information Forag-
ing Theory) probabilities for query suggestion. Our work supports query
completion by extending a user query prefix (one or two characters) to
a complete query utilising a foraging-based probabilistic patch selection
model. We present iBERT, to fine-tune the BERT (Bidirectional Encoder
Representations from Transformers) model, which leverages combined
textual-image queries for a solution to image QAC by computing proba-
bilities of a large set of image patches. The reflected patch probabilities
are used for selection while being agnostic to changing information need
or contextual mechanisms. Experimental results show that query auto-
completion using both natural language queries and images is more effec-
tive than using only language-level queries. Also, our fine-tuned iBERT
model allows to efficiently rank patches in the image.

Keywords: Query auto completion - Interactive information
retrieval - Information Foraging Theory

1 Introduction

Query auto-completion (QAC) is an action of signalling full queries once the user
starts typing a prefix of a few characters that eases user query compositions [4].
It is also termed as (dynamic) query suggestion [17], query completion [35] and
real-time query expansion [37]. Popular features such as QAC make people more
dependent on search engines to find any relevant information. However, such
kind of factor lets users express their queries only ambiguously, which are then
overly vague to be completely interpreted by search engines. This makes query
auto-completion a bottleneck construct in the usability of search engines [5].
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Also, users often apply several rounds of search to reformulate their queries fur-
ther to adhere to their information needs given they find some relevant results.
Past work [6,20] demonstrated the use of information scent to model users’
information need during web search, and it has been used to understand the
factors affecting search and what takes a user to stop the search. Despite the
good observation, the exploitation of information scent (from Information For-
aging Theory [27]) is under-explored in case of ambiguous queries and have not
been extended to take into account an image in query expansion (or sugges-
tion) tasks. For the users’ convenience, current search engines generally endue
query suggestions for them in order to describe their queries more explicitly.
They have been explored extensively in query auto-completion tasks, especially
the traditional approach known as Most Popular Completion (MPC) [3] which
at the extreme is incapable of anticipating a query it has never seen before.
Solutions further improved by recent semantically-driven models [23,24] and
neural model [26] approaches which are the current state-of-the art in QAC.
However, most of the language embedding models [13] have obtained strong
results on multiple benchmarks for understanding the polarity of word composi-
tions. Unsupervised pre-trained natural language embeddings [7,21] successfully
model long term dependencies with the purpose of predicting masked terms and
assessing if sentences ensue one another, which showed strong results on several
natural language processing and information retrieval tasks. Empirically, recent
advances in sequence models have been adapted to span a prefix to full text and
index [12] but despite the attainment, it has not been generalised to take an
image into account. Also, deep neural networks are mature enough and capable
of segmenting regions within an image [9,10].

To address the above mentioned gaps, we move one step forward to present
a method that extends and modifies the state-of-the-art approaches in query
completion and text embedding. We apply our ideas to an image search scenario
where we assume patches are regions of images that are relevant to the user’s
information need. Our work is concerned with providing users of image search
engines with a useful query suggestion (via a visually-oriented patch form) during
interaction, to further amplify their exploratory search experience. Hence, finding
useful patches for query expansion in an image based on textual queries (or
descriptions) is the primary focus of our work. Past work [11,30] used both
the query and image for typical retrieval and segmentation tasks. In our task
formulation, we rely only upon a given arbitrary text prefix rather than having
the entire text query which is used to perform search based on the image and
supported by a modified deep language model [12] to find the most relevant
patch in the image. We break down the task into three sub-tasks: (a) completing
the query from user query prefix and an image; (b) finding patch probabilities
based on the complete user query, and (c) aligning and segmenting all patches
in the image. We summarise our contributions of this paper as follows:

1. To the best of our knowledge, we are the first to present a method for image
query auto-completion where a user query prefix is adapted upon an image.
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2. We elaborate the analogy of query auto-completion based on Information For-
aging Theory and propose an explainable strategy for the observed challenges
of query formulation and the varying users’ information need.

3. We propose iBERT inspired by [7] to compute probabilities of patches and
rank them efficiently in the image.

Query Prefix m —_—
Query: m Completion: man
Query: ma Completion: man
Query: man Completion: man =
Query: man on Completion: man on left Query Completion
Query: man on t Completion: man on the left
Query: man on the Completion: man on the left
Query: man on the b Completion: man on the bottom
Query: man on the bo Completion: man on the bottom
Query: man on the boat Completion: man on the boat
Query: man on the boat in Completion: man on the boat in the middle
Query: man on the boat in a Completion: man on the boat in area

Fig. 1. Query auto-completion using our extended LSTM language model

2 Related Work

This section details a brief overview of query auto-completion, image search sug-
gestion, Information Foraging Theory and BERT pre-trained language embed-
ding model. We will investigate the latter approach experimentally in the fol-
lowing section.

Query Auto-Completion: Query auto-completion is an important aspect for
information retrieval systems which allow it to predict what could be the next
character (or query item) right after the first key was pressed by a user. The
predictions in IR systems are generally driven by the query logs (or query history)
which are the factual queries that users have previously entered as they were
trying to satisfy their information need [14,37]. [3] introduced a method called
NearestCompletion that addresses the situation of “context” which depicts the
users’ preceding queries in suggestion-based IR systems. The authors’ proposed
MPC mechanism relies on the entire popularity of the queries conforming to
the provided prefix. Recent work reported in [15] studies user reformulation
behaviour by leveraging textual features, whereas [31] introduced personalised
query auto-completion and found that utilising a user’s long-term search logs and
locations as well as both context-based textual features and demographic features
is more effective. More recent advances in QAC using neural language models are
proposed in [26] using recurrent neural networks that effectuate the performance
on immediately unseen queries. A generalised and adaptable language model for
personalised QAC is introduced in [12]. We extend this adaptable language model
to query completion in an image search scenario in the following section.
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Query Suggestion in Image Search: Query suggestion and query comple-
tion differs in their end goal in which the former search aspect outputs a list
of ranked queries against an input query, whereas the latter search aspect out-
puts queries with the first few characters (or text) similar to the user’s input.
Recent work [39] introduced a learning-based personalised suggestion framework
for query suggestion which uses both visual and textual queries. Their work uses
users’ click-through data. A new paradigm of attention-based mechanisms for
referring expressions in image segmentation [30] is proposed which contains a
keyword-aware network and query attention model that demonstrates the rela-
tionships with various image regions for a given query. Inspired by the idea of
attention models, we modify this mechanism for patch alignments within images
via information scent in the following section.

Information Foraging Theory: Information Foraging Theory (IFT) [27] is a
theoretical framework for understanding information access behaviour, derived
from the ecological science concept of optimal foraging theory which applies to
how humans access information. IFT stands on three different models, namely
information scent model, information patch model and information diet model,
which can illustrate users’ search preferences and behaviours [19]: (1) The infor-
mation within a certain environment scattered in form of patches (images, text
snippets, documents) consisting of information features (colors, words) refers
to the information patch model; (2) A user can go from one patch to another
via a cue (e.g., typing a query by following perceptual or heuristic cues [32]),
which meets the user’s information need. The goal of such cues is to charac-
terise the contents that will be envisaged by trailing the links, which refers to
the information scent model; (3) Different types of information sources will vary
in their information access costs. Users will assess the information sources based
on information gain per unit cost or varied profitability, and then the users will
narrow or expand diversities of information sources based on their profitability.
This user behaviour refers to the information diet model.

One of the main IFT concepts are information patches. For instance, sections
and their associated features in search engine results can be considered patches.
From a foraging perspective in image search, the searcher is the predator (or for-
ager [38]), the information patch is any segment or a region within an image (or
image itself) in a given information environment. The piece of information a
user is looking for is the prey, and the consumed (or gained) information is the
information diet. Something on the user interface that informs users about a
specific place they should look next is referred to as a cue of the information
scent.

Language Embeddings: Nowadays, many information retrieval or natural lan-
guage processing tasks rely on language embeddings, such as word2vec [22],
Glove!, and fastText?. They use vector word embeddings for word representa-
tion to transform a distinct space of human language into a continuous space,

! https://nlp.stanford.edu/projects/glove/.
2 https://fasttext.cc.
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which will be further processed usually through a neural network. In query auto-
completion, embeddings have been employed for distributed representation of
queries based on a convolutional latent semantic model [23]. Word embeddings
have been used to compute query similarity for query auto-completion [29], incor-
porating the features with the Most Popular Completion model. Very recent
work [7] introduced a pre-trained deep language model known as BERT which
has shown promising results on several IR and natural language processing tasks.
However, it is still not well-explored how to leverage such pre-trained language
models for QAC, which poses certain challenges both regarding the task and
training. Based on this work, we describe our proposed BERT-based model for
computing patch probabilities in the following section.

3 Our Model

Let a set of patches py € P, where P is the complete set of recognisable patch
classes, be given. The user inputs a query prefix ¢,, an incomplete query to
retrieve an image I. With the given g,, we auto-complete the expected query q.
We formulate the auto-completion query task as the probability maximisation
of a given query adapted on an image as shown in Eq. (1)

qo+ = argmax P(q|gp, I) = argmax P(t1ta...tn|qp, 1) (1)
q {t1ta. tn}

where g, is the adapted query on an image, t; € S is the term in position 7 in
a sequence S.

We consider the task of estimating patch probabilities provided an auto-
completion query ¢, as a multi-label problem where each class of patches can
independently exist. Let P, . be the set of patches attributed to in g,«. As ¢y,
is the estimate of P(py € P,,.) and y, = 1[px € P,,.], the sigmoid cross entropy
loss function is minimized by the patch selection model:

Lfocrection = — Z Yk IOg((fpk) + (1 - yk) log(l - ‘jpk) (2)
k

An overview of the proposed end-to-end architecture shown in Fig.2. The
user types his/her query prefix for the given image to autocomplete and we per-
form image feature extraction using a pre-trained Convolutional Neural Network
(CNN). Then, we feed the image features into the extended Long Short-Term
Memory (LSTM) language model together with the query prefix which has a
context-dependent weight matrix with an adaptation matrix constructed from
a context-driven embedding model. These two constructs from image and text
as visual features and textual queries are applied to complete a query. The com-
pleted query is then passed to iBERT (fine-tuned BERT language embedding
model) to compute the patch probabilities, which in are utilised for patch selec-
tion. More details are provided in the next section.



Utilising IFT for User Interaction with Image Query Auto-Completion 671

o g

User

i CNN . '
: We= W + E = !
~--Query prefix:m \ © el 2 el

................

\\-«
Probabilities T~
~— \\ L (Extends)
Classes 0000000 \
- ~
Fine-tune SoftMax LSTM Model

Complete Query
-

QUery [CLS] man o boat
character

Patch Selection iBERT

Fig. 2. The end-to-end architecture of Image Query Auto-Completion: User query
prefix with the image features generated from a pre-trained CNN are input to an
extended LSTM model (by incorporating a context-dependent weight matrix) which
predicts a complete query. The resulting query is fed into a fine-tuned BERT pre-trained
embedding model which outputs patch probabilities for patch selection.

3.1 Image Query Auto Completion

The challenge of query auto-completion is to predict and generate queries from
prefixes that have never been seen in the training set. An initial attempt
using neural language models has been introduced in [33]. The benefit of using
character-level neural language models is providing more fine-grained predic-
tions but they suffer from the semantic understanding that word-level models
provide. For a prefix that has not been seen before (such as an incomplete word),
their model enriches the shared information among comparable prefixes to cre-
ate prediction nonetheless. In our scenario, we are given a prefix to complete a
query conditioned on an image. To solve this new QAC problem, we exploit and
extend the Long Short-Term Memory (LSTM) language model [12] with com-
bined input and forget gates to auto complete queries. The language model is
made up of a single-layer character-level LSTM with layer normalisation [2]. Our
extension and modification to this language model is that we replace user embed-
dings with a low-dimensional representation of images. We adapt this LSTM
language model alongside a context-dependent weight matrix W replaced by
We = W+Ma. We are providing a character embedding w,. € R€, a preceding
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hidden state h._, € R, where M4 is the adaptation matrix constructed by the
product (x; denotes the i-th-order tensor product) of the context ¢ with two
basis tensors, T, € R**(€th)xv and Ty € RV*"*%_ Alternatively, the two basis
tensors i.e., Ty, and T are re-shaped to R**(¥(e+h) and Rv"*% So the next
predicted hidden state and the adaptation matrix can be equated as follows:

he = o([we, he—1]We + b) 3)
MA = (C X1 TL)(TR X3 C)
We combine the context-driven weight matrix and the immediate preceding
hidden state followed by the generated adaptation matrix which able to alter
each query completion to be personalised to a particular image representation.
We perform feature extraction on an input image using a Convolutional Neural
Network (CNN) trained on ImageNet (pre-trained CNN), where we retrain only
the last two fully connected layers shown in Fig. 2. The generated image feature
vector is then fed into the LSTM language model via the adaptation matrix. We
apply beam search decoding [34] in the generated array of predicted characters
to select the optimal completion for the user query prefix.

3.2 iBERT - BERT for Patch Probability

We describe our approach to compute the probability of image patches which
addresses an important aspect of query auto-completion systems. We assume
that during the search process, users are typically interested in some part of
the image as well as the image itself if it matches the mental picture of their
belief [36]. Our work focuses on a new perspective of query auto-completion
on images and the proposed model finds image patches which match the user
context based on the query prefix using Eq. (1). BERT (Bidirectional Encoder
Representations from Transformers) [7] shows promising results in multiple tasks
of natural language processing and information retrieval [25] and is presently the
state-of-the-art embedding model. We propose to fine-tune the BERT model as
a transfer learning task for patch selection, using images composed of several
patches (regions of an image), hence the name iBERT®. To the best of our
knowledge, BERT has not yet been retraced for the QAC task. We use the
BERT embedding model, which has a twelve layer implementation, extending it
by adding a dense layer with 10% dropout which then is mapped to the final
pooled layer connected the object class, and which outputs patch probabilities
as shown in Fig. 2.

3.3 Information Foraging Explanation

Our goal of using Information Foraging Theory [27] from a cognitive viewpoint
is to find explanations for the observed behaviour in query auto-completion
and to model the information need within query sessions. IFT postulates that

[1533]

3 The lowercase “i” represents image patch.
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the human information seekers follow an information scent to navigate from one
information region to another in an information environment that is instinctively
patchy in nature, and from one information patch to another within a region. IF'T
implies that foragers adapt their behaviour to the structure of the information
environment in which they prevail such that the entire system (encompassing
the information seeker, the information environment, and the interactions among
these two) tries to maximise the ratio of the expected value of the information
gained to the total cost of the interaction. Following the IFT analogy, when
users start typing a prefix to auto-complete, their perceptual cues (such as mental
beliefs [36]) either allow them to type the next character or to access the provided
suggestion (under the query field) which acts as a distal cue and visually inspires
the user to acquire them instantly to forage or seek. Query auto-completion,
from an IFT perspective as query-level user interaction, is initiated by the user
typing as little as a single-character query prefix. The user then may follow
suggestions in case a completion is generated (which again follows the earlier
mentioned strategy). In case the query prefix is unknown to the system (e.g. by
being entered for the first time) the information scent associated with a result
might be too poor [6] to immediately infer information needs. In this case we are
applying beam search to generate the query based on image features. Suggestions
are based on information scent values as described in the following subsection.
These query suggestions represent the diversity of information scent patterns
which elicits a varied distribution of relevant queries in the search field.

Patch Selection. This section describes the foraging-based strategy for patch
selection. The technicalities of ranking patches (after patch selection) in the
image (from image search results) are illustrated in Sect. 3.2. We utilise IFT to
infer the user’s information need utilising the Inferring User Need by Information
Scent (IUNIS) algorithm [6] which was proposed to weigh each page vector along
with the two factors i.e., TF-IDF weight and time, that were used to quantify
the associated information scent with the page. In our image search scenario, we
have images as search results where an image is considered as a set of patches
containing features such as color, shape, texture, etc. In our proposed iBERT
model, we use information scent to inspect patches based on image features and
select patches which have higher probability estimated by the iBERT model.
Probabilistic Patch Selection Model (PPSM) is a first attempt to reflect users’
information need coherently by means of information scent. PPSM is used for
a task that extends finding patches and makes the quantification of semantic
uncertainties an important choice in selection. The important requirement for
PPSM is a model (iBERT) that identifies patches in an image which are relevant
to the user’s information need (query). Inspired by the concept of TF-IDF in IR,
we represent the categorical distribution of frequency (fp,) of each patch in an
image (from the search results) in a given query session @, and the ratio of total
number of query session (Qr) during the entire search process to the number
of query sessions (N,) that contain the given patches (p;) found in Q5. We also
consider the time spent (T") on the resulting images in a given query session to
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estimate the information scent (I.S) within a query session as:

n

15(Q0) = 3 o los( )T (). @
i=1 g

The user effort in terms of time is a function of patches which can be diverse and
of different image class category. To generalise this for finding the information
scent of a patch which then is assessed to select patches with higher information
scent and then compared against the patch probability obtained via iBERT to
distinguish the result. If we assume that the generated auto-completions induce
several suggested queries (representing different information needs) simultane-
ously, every suggestion is in a competition to be discriminated as evident to the
user. In the same way, an image contains multiple related or unrelated patches
within it, and users find it difficult to judge which patches are relevant among
images, which is due to the high uncertainty of correlated features within an
image spread via patches. This motivates us to estimate the information scent
of an image patch. There are two ways to compute the information scent of
an image; one is to hire individual judges to rate scent on a scale [27] and the
second approach is an algorithmic approach [28]. To estimate the information
scent of a patch, we consider that PPSM constitutes patches that are probability
distributions over images as observations. We assume image features as activa-
tors to perceptual cues because the user interpretation to image features when
matched gives rise to a selection of an item (i.e., patch). The distributions are
independent Bernoulli distributions of the features. Each observation is allocated
to a patch, but the number of patches is not necessarily fixed i.e., the model is a
non-parametric mixture with a product of independent Bernoullis as observation
model. Therefore, the log-probability of selecting an image I for patch p;

p(I | p;) = Hrpfif (1- rpf)l_if (5)

where 7, f = f((m;,8;), (1—m;)s;) is the Bernoulli rate for patch p to emit feature
f, iy is the image containing feature f, and 7, f is a function of prior parameters
representing activators (perceptual cues) for the selected patch. There can be
a situation when most patches have only one observation (image) and features
are very sparse i.e., the possibility of multiple perceptual cues per patch (i.e.,
7s < 1) is low. To interpret Bernoulli’s prior parameters such as s;, we find the
probability to observe a feature (f € 4 meaning ¢ = 1) provided that it has been
observed for a patch p (k=1) is:
S1Ts + 1 s1ms + 1 N 1

p(i | " ) s1+n s1+1 s1+1 (6)

if 7 < 1. The probability of observing a feature in a new image, given that it
has been observed before, is a measure of its reliability. We use this probabilistic
model to compare the results based on the probabilities of patches obtained from
iBERT.
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4 Experiments

4.1 Dataset

We use two well-known and diverse datasets: a visual dataset with large-scale
knowledge bases that provide a rich collection of language annotations for visual
concepts known as Visual Genome [18] with over 100k images where most image
categories fall within a long tail, and the Referlt dataset [16] which contains ~42k
image regions with descriptions. These two datasets fit well for our tasks. The
Visual Genome dataset includes images, region descriptions, question-answers,
objects, relationships, and attributes. The region descriptions confer a substi-
tution for queries as they refer to several objects in various regions of every
image. Few region descriptions are referring phrases and few of them are quite
alike to descriptions. For example, referring descriptions are “guy sitting on the
couch”, “white keyboard on the desk” and non-referring descriptions are “couch
is brown” and “mouse is in the charger”. The huge number of instances from
the Visual Genome dataset makes it quite convenient for our task. The Referlt
dataset is a collection of referring expressions engaged to images which quite
intently resemble probable user queries of images. We separately train models
for query auto-completion and patch selection using both datasets.

4.2 Training

We combine query and image as pairs by utilising the region descriptions from
the Visual Genome dataset and referring to expressions from the Referlt dataset.
During training, we taken 85% of the Visual Genome data as the training set
consists of 16,000 images and 740,000 corresponding region descriptions in which
there are approximately 40-45 text descriptions per image. The training data
from the Referlt dataset consists of 9,000 images and 54,000 referring expression
with approximately 4-6 referring expression per image.

For the query auto-completion task, we train our extended LSTM language
model where the dimension of image representation is 128, r = 64 is the rank
of the matching personalised matrix (component from Fig.2). We use character
embeddings with dimension 24, the dimension of the LSTM hidden units is
512, and a maximum length of 50 characters per query with Adam optimizer
at a learning rate of 5e-4 for 50,000 iterations as well as a batch size of 32.
For the patch selection task, we train our proposed iBERT model using pairs
of (region description, patch set) from the Visual Genome dataset, giving rise
to a training set of approximately 1.73 million samples. The extra 0.3 million
samples are split into test and validation set. We conduct training for the patch
selection model that fine-tunes BERT having twelve layers with batch size of
32 for 250,000 iteration using Adam as optimizer at a learning rate of 5e-5 in
which the performance increases steeply for the initial 10% of iterations. We use
a NVIDIA Tesla T4 GPU which takes a day and half for the complete training
activity.
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4.3 Performance Measure

We evaluate the quality of our predictions and estimations using the following
performance metrics:

Mean Reciprocal Rank: The most standard metrics for QAC tasks is the
mean reciprocal rank (MRR), which is the average of the reciprocal ranks of the
final queries in the QAC outcomes. The MRR for the query auto-completion
system @4 provided the test dataset Dy is as follows:

MRR(Q4) = —— 3 RR(¢,Qa(qy))

| Dr | qe€DT

where ¢, is a prefix of query ¢ and Qa(gp) is the list ranked for candidate
completions of ¢, from Q4. RR denotes the reciprocal rank of ¢ if ¢ is present
in Qa(gp), in other cases reciprocal is 0.

Language Perplexity: Perplexity is a measure to encapsulate uncertainty of
the model for a given query prefix. This metric has been explored earlier for
an information retrieval task [8] and its correlation with the standard precision-
recall measures has been investigated [1]. The average inverse probability is
perplexity. A better model has lower perplexity.

Perplexity(q,) =

1
H P(qilqi—1)

i=1

where N is the normalised length of the query and P(g;|g;—1) is the probability
of the complete query given the immediate preceding query prefix.
We evaluate the patch selection by F1 score.

4.4 Results and Discussion

We report the evaluation result in Table 1. We perform our evaluation in two
parts. Firstly, we evaluate the quality of our query completion (query prefix
of length one or more character) by mean reciprocal rank and perplexity. Sec-
ondly, we evaluate the patch selection task by F1 score. We evaluate the query
completion task on Visual Genome and Referlt datasets which have character
vocabulary sizes of 89 and 77. We match index T} of the true query prefix in the
top 10 predicted completions where we estimate the MRR score as ) T% and
reinstate the reciprocal rank with 0 in case if query does not appear in the top 10
completions. The perplexity comparison on both collection of test queries utilis-
ing corresponding contexts i.e., images and indiscriminate noise. The perplexity
on the Visual Genome and Referlt test queries with both contexts is shown in

Table 2. During the evaluation on the Visual Genome and Referlt test sets (or
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queries), we analyse the query prefix with different length for the corresponding
context (noise and image). We found that mean reciprocal rank is altered by the
query prefix length, as long-tailed queries are comparatively more difficult than
queries of average length to match. Hence, we examine quite better performance
for all prefix lengths on the Referlt dataset (from Table 2).

Table 1. Evaluation results of the query completion task. Our MRR score is in bold
face.

Model MRR (Seen+Unseen)
MPC [3] 0.171
Character n-gram (n="7) 0.287
Mitral0K-+MPC+AMART [24] 0.278
Mitral00K+MPC+AMART [24] 0.298
NQLM(S)+WE-+MPC [26] 0.345
NQLM(L)+WE+MPC [26] 0.355
NQLM(L)+WE+MPC+AMART [26] | 0.354
FactorCell [12] 0.309
E-LSTM LM(Ours)” 0.764

*E-LSTM LM: Extended LSTM Language Model

Table 2. Perplexity of image query auto-completion on both datasets utilising an image
and indiscriminate noise. Inclusion of image results in a better (lower) perplexity

Dataset Context

Image | Indiscriminate noise
Visual Genome |2.35 |3.81

Referlt 2.63 |3.45

We evaluated our proposed iBERT model for finding patch probabilities
which is used to select and rank patches in the image. We achieve an F1 score*
of 0.7638 over 3,000 patch classes.

5 Conclusion and Future Work

In this work, we propose an extended LSTM language model for a new task of
query auto-completion adapted upon an image. The language model enriches
both image features and text information in which the surplus of beam search
over our model is efficiently able to predict future queries at least on a single
character prefix. The significant increase in MRR is due to the inclusion of

4 F1 score for the baseline methods shown in Table 1 were not available.
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visual information within textual queries as explained by IFT model. Also, we
present iBERT for patch selection to efficiently rank them in the image and
eventually predicts the most suitable image for the auto-completed query, and
compare against the result from probabilistic patch selection model. This work
is among the first attempt to apply foraging-based strategy to QAC. The self-
explanatory power of IFT to understand user interaction at query level leads the
foundation of probabilistic patch selection model to devise users’ information
need. Our future work is to generalise the referring expression with contextual
model to distinguish referring and non-referring region descriptions. We intend
to aggregate information from textual queries and visual descriptions to scale it
for multimodal query auto-completion in a single model.
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