Skip to main content

Complex Systems Modeling Overview About Techniques and Models and the Evolution of Artificial Intelligence

  • Conference paper
  • First Online:
Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1159))

Included in the following conference series:

Abstract

Several natural systems are defined as complex (related to several domains including: physics, biology, social sciences, cognitive sciences, ...) and many artificial and industrial systems fall into this category. These systems are often distributed, open, large-scale and heterogeneous. With their interconnections so complicated, they are beyond the general understanding of a human being. Modelling such systems is not an easy task and so the need of efficient techniques and models. Different techniques and models was proposed to tackle the complexity of modelling such systems. The evolution of artificial intelligence techniques can solve several problems related to complex systems design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, H., Schirner, M., Jeurissen, B., Van Roost, D., Achten, E., Ritter, P., Marinazzo, D.: Modeling brain dynamics in brain tumor patients using the virtual brain. ENEURO 5(3), 15 (2018)

    Article  Google Scholar 

  2. Amaral, L.A., Ottino, J.M.: Organisation as co-evolving complex adaptive systems. In: British Academy of Management Conference, pp. 8–12 (1997)

    Google Scholar 

  3. Bardini, R., Politano, G., Benso, A., Di Carlo, S.: Multi-level and hybrid modelling approaches for systems biology. Comput. Struct. Biotechnol. J. 15, 396–402 (2017)

    Article  Google Scholar 

  4. Delile, J., Doursat, R., Peyriéras, N.: Computational modeling and simulation of animal early embryogenesis with the MecaGen platform. In: Kriete, A., Eils, R. (eds.) Computational Systems Biology, 2nd edn, pp. 359–405. Academic Press, Oxford (2014)

    Chapter  Google Scholar 

  5. Ducruet, C., Lugo, I.: Structure and dynamics of transportation networks: models, methods and applications. In: Rodrigue, J.P., Notteboom, T.E., Shaw, J. (eds.) The SAGE Handbook of Transport Studies, pp. 347–364. SAGE, Thousand Oaks (2013)

    Chapter  Google Scholar 

  6. Foughali, M., Ingrand, F., Seceleanu, C.: Statistical model checking of complex robotic systems (2019)

    Google Scholar 

  7. Frazzon, E., Kück, M., Freitag, M.: Data-driven production control for complex and dynamic manufacturing systems. CIRP Ann. - Manuf. Technol. 67, 515–518 (2018)

    Article  Google Scholar 

  8. García, S., Strüber, D., Brugali, D., Di Fava, A., Schillinger, P., Pelliccione, P., Berger, T.: Variability modeling of service robots: experiences and challenges. In: VaMoS (2019)

    Google Scholar 

  9. Harsha, T., Garimella, R., Menghani, R., Gerber, J.I., Sridhar, S., Kraft, R.H.: Embedded finite elements for modeling axonal injury. Ann. Biomed. Eng. 47(9), 1889–1907 (2019)

    Article  Google Scholar 

  10. Gell-Mann, M.: Complexity at large. Complexity 1(5), 3–5 (1996)

    Article  MathSciNet  Google Scholar 

  11. Horstemeyer, M.F., Berthelson, P.R., Moore, J., Persons, A.K., Dobbins, A., Prabhu, R.K.: A mechanical brain damage framework used to model abnormal brain tau protein accumulations of national football league players. Ann. Biomed. Eng. 47(9), 1873–1888 (2019)

    Article  Google Scholar 

  12. Horstemeyer, M.F., Panzer, M.B., Prabhu, R.K.: State-of-the-art modeling and simulation of the brain’s response to mechanical loads. Ann. Biomed. Eng. 47(9), 1829–1831 (2019)

    Article  Google Scholar 

  13. Hu, Y., Zhu, D.: Empirical analysis of the worldwide maritime transportation network. Phys. A 388, 2061–2071 (2009)

    Article  Google Scholar 

  14. Kaplan, S.M.: Electric power transmission: background and policy issues. CRS Report for Congress (2009)

    Google Scholar 

  15. Kim, O.D., Rocha, M., Maia, P.: A review of dynamic modeling approaches and their application in computational strain optimization for metabolic engineering. Front. Microbiol. 9, 1690 (2018)

    Article  Google Scholar 

  16. Lepicard, G.: Théorie des systèmes complexes. Contributions des membres du Groupe Emergence è des publications ou présentations (2009)

    Google Scholar 

  17. Mefteh, W.: Simulation-based design: overview about related works. Math. Comput. Simul. 152, 81–97 (2018)

    Article  MathSciNet  Google Scholar 

  18. Mefteh, W., Migeon, F., Gleizes, M.P., Gargouri, F.: ADELFE 3.0 design, building adaptive multi agent systems based on simulation a case study. In: Computational Collective Intelligence - Proceedings, Part I 7th International Conference, ICCCI 2015, Madrid, Spain, 21-23 September 2015, pp. 19–28 (2015)

    Google Scholar 

  19. Mefteh, W., Migeon, F., Gleizes, M.P., Gargouri, F.: Simulation based design for adaptive multi-agent systems with the ADELFE methodology. IJATS 7(1), 1–16 (2015)

    Article  Google Scholar 

  20. Qiao, L., Kao, S., Zhang, Y.: Manufacturing process modelling using process specification language. Int. J. Adv. Manuf. Technol. 55(5–8), 549–563 (2011)

    Article  Google Scholar 

  21. Stavropoulos, P., Foteinopoulos, P.: Modelling of additive manufacturing processes: a review and classification. Manuf. Rev. 5, 26 (2018)

    Google Scholar 

  22. Stoyenko, A.: Engineering complex computer systems: a challenge for computer types everywhere. i. let’s agree on what these systems are. Computer 28(9), 85–86 (1995)

    Article  Google Scholar 

  23. Wu, T., Alshareef, A., Sebastian Giudice, J., Panzer, M.B.: Explicit modeling of white matter axonal fiber tracts in a finite element brain model. Ann. Biomed. Eng. 47, 1908–1922 (2019)

    Article  Google Scholar 

  24. Wenfu, X., Liang, B., Yangsheng, X.: Survey of modeling, planning, and ground verification of space robotic systems. Acta Astronaut. 68(11), 1629–1649 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mefteh, W., Mejri, MA. (2020). Complex Systems Modeling Overview About Techniques and Models and the Evolution of Artificial Intelligence. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1159. Springer, Cham. https://doi.org/10.1007/978-3-030-45688-7_67

Download citation

Publish with us

Policies and ethics