Skip to main content

Design and Control of a Biologically Inspired Shoulder Joint

  • Conference paper
  • First Online:
Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Abstract

In the field of human-centered robotics, there are needed flexible, robust, agile robots that have the natural human like mechanisms in place. In order to achieve these robots, human motor systems must be analyzed and abstracted, from the mechanical level, to the behavioral and cognitive level. In this paper will be presented the abstracted human shoulder joint, seen as a modified Stuart platform, with a platform supported on a pivot and driven by four actuating motors. The elements of resistance imitate the shoulder blade and the humerus, and those of drive and control of the movements represent the four main muscles of the shoulder. They have the shape close to the natural shape of the human bones, and the elements of drive and control, which take over the functions of the muscles, have the location and the points of connection with the elements of resistance similar to the natural connections between bones and muscles. The connections between the natural muscles and the bones are made using the tendons. These flexible links, coupled with the open shape of the shoulder joint, drive the humerus in a 360° rotational motion. To allow a left-up-right-down-left circular motion, we introduced the tendon that has a cardan coupling, on the side of the muscles and a sphere on the side of Humerus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jäntsch, M., Wittmeier, S., Knoll, A.: Distributed control for an anthropomimetic robot. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, pp. 5466–5471 (2010). https://doi.org/10.1109/iros.2010.5651169

  2. Holland, O., Knight, R.: The anthropomimetic principle. In: Proceedings of the AISB 2006 Symposium on Biologically Inspired Robotics. pp. 1–8 (2006)

    Google Scholar 

  3. Prilutsky, B.: Coordination of two-and one-joint muscles: functional consequences and implications for motor control. Mot. Control 4(1), 1–44 (2000)

    Article  Google Scholar 

  4. Boblan, I., Bannasch, R., Schwenk, H., Prietzel, F., Miertsch, L., Schulz, A.: A human-like robot hand and arm with fluidic muscles: biologically inspired construction and functionality. In: Embodied Artificial Intelligence, pp. 160–179. Springer, Heidelberg (2004)

    Google Scholar 

  5. Marques, H.G., Jäntsch, M., Wittmeier, S., Holland, O., Alessandro, C., Diamond, A., Lungarella, M., Knight, R.: ECCE1: the first of a series of anthropomimetic musculoskeletal upper torsos. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 391–396. IEEE, December 2010

    Google Scholar 

  6. Dehez, B., Sapin, J.: ShouldeRO, an alignment-free two-DOF rehabilitation robot for the shoulder complex. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–8. IEEE, June 2011

    Google Scholar 

  7. Panaite, A.F., Rişteiu, M.N., Olar, M.L., Leba, M., Ionica, A.: Hand rehabilitation- a gaming experience. In: IOP Conference Series: Materials Science and Engineering, vol. 572 (2019)

    Google Scholar 

  8. Rosca, S.D., Leba, M.: Using brain-computer-interface for robot arm control. In: MATEC Web of Conferences, vol. 121, p. 08006. EDP Sciences (2017)

    Google Scholar 

  9. Risteiu, M., Leba, M., Arad, A.: Exoskeleton for improving quality of life for low mobility persons. Qual.- Access Success 20, 341–346 (2019)

    Google Scholar 

  10. Olar, M.L., Risteiu, M.N., Leba, M.: Interfaces used for smartglass devices into the augmented reality projects. In: MATEC Web of Conferences, vol. 290, p. 01010. EDP Sciences (2019)

    Google Scholar 

  11. Negru, N., Leba, M., Rosca, S., Marica, L., Ionica, A.: A new approach on 3D scanning-printing technologies with medical applications. In: IOP Conference Series: Materials Science and Engineering, vol. 572 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Leba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olar, M.L., Leba, M., Rosca, S. (2020). Design and Control of a Biologically Inspired Shoulder Joint. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1160. Springer, Cham. https://doi.org/10.1007/978-3-030-45691-7_72

Download citation

Publish with us

Policies and ethics