Abstract
In recent years, robotics applications based on open source have been developed, where the precision in movements is considered as the main goal when following a trajectory, however, due to different circumstances, small errors can interfere with the individual control of the manipulator joints, to improve the accuracy of the end-effector in cartesian space there are different kind of methods as the gravity compensation which is included in the dynamic model. In addition to the development of a system that integrates concepts of Industry 4.0, a low-cost controller is used for this system, where high communication and processing capabilities allow rapid exchange of information between components. In this article is developed an application over Raspberry Pi 3B for control the arm of KUKA youBot through a graphical interface where positions can be saved and reproduces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Binazadeh, T., Yousefi, M.: Designing a cascade-control structure using fractional-order controllers: time-delay fractional-order proportional-derivative controller and fractional-order sliding-mode controller. J. Eng. Mech. 143(7), 04017037 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001234
Di Napoli, G., Filippeschi, A., Tanzini, M., Avizzano, C.A.: A novel control strategy for youbot arm. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 482–487 (2016). https://doi.org/10.1109/IECON.2016.7793658
Garcia, C.A., Franklin, S.L., Mariño, C., Villalba, W.R., Garcia, M.V.: Design of flexible cyber-physical production systems architecture for industrial robot control. In: 2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM), pp. 1–6 (Oct 2018). https://doi.org/10.1109/ETCM.2018.8580338
Garcia, C.A., Lanas, D., Edison, A.M., Altamirano, S., Garcia, M.V.: An approach of cyber-physical production systems architecture for robot control. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 2847–2852 (2018). https://doi.org/10.1109/IECON.2018.8591286
de Gea Fernández, J., Mronga, D., Günther, M., Knobloch, T., Wirkus, M., Schröer, M., Trampler, M., Stiene, S., Kirchner, E., Bargsten, V., Bänziger, T., Teiwes, J., Krüger, T., Kirchner, F.: Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings. Rob. Auton. Syst. 94, 102–119 (2017). https://doi.org/10.1016/j.robot.2017.04.007. http://www.sciencedirect.com/science/article/pii/S0921889016305127
Hernández, V., Santibáñez, V., Carrillo, R., Molina, J., López, J.: Control pd de robots: Dinámica de actuadores y nueva sintonía. Revista Iberoamericana de Automática e Informática Industrial RIAI 5(4), 62–68 (2008). https://doi.org/10.1016/S1697-7912(08)70178-X. http://www.sciencedirect.com/science/article/pii/S169779120870178X
Koubâa, A.: Robot Operating System (ROS). Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-26054-9
Peidró, A., Reinoso, Ó., Gil, A., Marín, J.M., Payá, L.: Análisis de estabilidad de singularidades aisladas en robots paralelos mediante desarrollos de taylor de segundo orden (2017)
Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015). https://doi.org/10.1016/j.jmsy.2015.04.008. http://www.sciencedirect.com/science/article/pii/S0278612515000400
Yu, C., Li, Z., Liu, H.: Research on gravity compensation of robot arm based on model learning*. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 635–641 (2019). https://doi.org/10.1109/AIM.2019.8868673
Zhang, B., Gao, S.: Kuka youbot arm path planning based on gravity. In: 2018 International Conference on Mechanical, Electrical, Electronic Engineering & Science (MEEES 2018). Atlantis Press (2018). https://doi.org/10.2991/meees-18.2018.75, https://doi.org/10.2991/meees-18.2018.75
Acknowledgment
This work was financed by Universidad Técnica de Ambato (UTA) and their Research and Development Department (DIDE) under project CONIN-P-256-2019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alvarez-Montenegro, D., Escobar-Naranjo, J., Brito, G.D., Garcia, C.A., Garcia, M.V. (2020). Design of a Gravity Compensation for Robot Control Based on Low-Cost Automation. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1160. Springer, Cham. https://doi.org/10.1007/978-3-030-45691-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-45691-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45690-0
Online ISBN: 978-3-030-45691-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)