Skip to main content

Enabling Smart Homes Through Health Informatics and Internet of Things for Enhanced Living Environments

  • Conference paper
  • First Online:
Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Abstract

As people spend most of their time inside buildings, indoor environment quality must be monitored in real-time for enhanced living environments and occupational health. Indoor environmental quality assessment is based on the satisfaction of the thermal, sound, light and air quality conditions. The indoor quality patterns can be directly used to promote health and well-being. With the proliferation of the Internet of Things related technologies, smart homes must incorporate monitoring solutions for data acquisition, transmission, and microsensors for several real-time monitoring activities. This paper presents a low-cost and scalable multi-sensor smart home solution based on Internet of Things for enhanced indoor quality considering acoustic, thermal and luminous comfort. The proposed system incorporates three sensor modules for data collection and use Wi-Fi communication technology for Internet access. The system has been developed using open-source and mobile computing technologies for real-time data visualization and analytics. The acquisition modules incorporate light intensity and colour temperature, particulate matter, formaldehyde, relative humidity, ambient temperature and sound sensor capabilities. The results have successfully validated the scalability, reliability and easy installation of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Smart homes and their users: a systematic analysis and key challenges. Pers. Ubiquit. Comput. 19, 463–476 (2015)

    Article  Google Scholar 

  2. Marques, G., Pitarma, R., Garcia, N.M., Pombo, N.: Internet of Things architectures, technologies, applications, challenges, and future directions for enhanced living environments and healthcare systems: a review. Electronics 8, 1081 (2019). https://doi.org/10.3390/electronics8101081

    Article  Google Scholar 

  3. Ganchev, I., Garcia, N.M., Dobre, C., Mavromoustakis, C.X., Goleva, R. (eds.): Enhanced Living Environments: Algorithms, Architectures, Platforms, and Systems. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10752-9

    Book  Google Scholar 

  4. Marques, G., Garcia, N., Pombo, N.: A survey on IoT: architectures, elements, applications, QoS, platforms and security concepts. In: Mavromoustakis, C.X., Mastorakis, G., Dobre, C. (eds.) Advances in Mobile Cloud Computing and Big Data in the 5G Era, pp. 115–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45145-9_5

    Chapter  Google Scholar 

  5. Marques, G.: Ambient assisted living and Internet of Things. In: Cardoso, P.J.S., Monteiro, J., Semião, J., Rodrigues, J.M.F. (eds.) Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities, pp. 100–115. IGI Global, Hershey (2019). https://doi.org/10.4018/978-1-5225-7332-6.ch005

    Chapter  Google Scholar 

  6. Dobre, C., Mavromoustakis, C.X., Garcia, N.M., Mastorakis, G., Goleva, R.I.: Introduction to the AAL and ELE systems. In: Ambient Assisted Living and Enhanced Living Environments, pp. 1–16. Elsevier (2017). https://doi.org/10.1016/B978-0-12-805195-5.00001-6

  7. Yang, L., Yan, H., Lam, J.C.: Thermal comfort and building energy consumption implications – a review. Appl. Energy 115, 164–173 (2014). https://doi.org/10.1016/j.apenergy.2013.10.062

    Article  Google Scholar 

  8. Havenith, G., Holmér, I., Parsons, K.: Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build. 34, 581–591 (2002). https://doi.org/10.1016/S0378-7788(02)00008-7

    Article  Google Scholar 

  9. Stansfeld, S.A., Matheson, M.P.: Noise pollution: non-auditory effects on health. Br. Med. Bull. 68, 243–257 (2003). https://doi.org/10.1093/bmb/ldg033

    Article  Google Scholar 

  10. Auger, N., Duplaix, M., Bilodeau-Bertrand, M., Lo, E., Smargiassi, A.: Environmental noise pollution and risk of preeclampsia. Environ. Pollut. 239, 599–606 (2018). https://doi.org/10.1016/j.envpol.2018.04.060

    Article  Google Scholar 

  11. Foraster, M., Eze, I.C., Schaffner, E., Vienneau, D., Héritier, H., Endes, S., Rudzik, F., Thiesse, L., Pieren, R., Schindler, C., Schmidt-Trucksäss, A., Brink, M., Cajochen, C., Marc Wunderli, J., Röösli, M., Probst-Hensch, N.: Exposure to road, railway, and aircraft noise and arterial stiffness in the SAPALDIA study: annual average noise levels and temporal noise characteristics. Environ. Health Perspect. 125, 097004 (2017). https://doi.org/10.1289/EHP1136

    Article  Google Scholar 

  12. Gupta, A., Gupta, A., Jain, K., Gupta, S.: Noise pollution and impact on children health. Indian J. Pediatr. 85, 300–306 (2018). https://doi.org/10.1007/s12098-017-2579-7

    Article  Google Scholar 

  13. Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of Things for smart cities. IEEE Internet Things J. 1, 22–32 (2014). https://doi.org/10.1109/JIOT.2014.2306328

    Article  Google Scholar 

  14. Murphy, E., King, E.A.: An assessment of residential exposure to environmental noise at a shipping port. Environ. Int. 63, 207–215 (2014). https://doi.org/10.1016/j.envint.2013.11.001

    Article  Google Scholar 

  15. Murphy, E., King, E.A.: Environmental noise and health. In: Environmental Noise Pollution, pp. 51–80. Elsevier (2014). https://doi.org/10.1016/B978-0-12-411595-8.00003-3

  16. Stansfeld, S.: Noise effects on health in the context of air pollution exposure. Int. J. Environ. Res. Public Health 12, 12735–12760 (2015). https://doi.org/10.3390/ijerph121012735

    Article  Google Scholar 

  17. Morillas, J.M.B., Gozalo, G.R., González, D.M., Moraga, P.A., Vílchez-Gómez, R.: Noise pollution and urban planning. Curr. Pollut. Rep. 4, 208–219 (2018). https://doi.org/10.1007/s40726-018-0095-7

    Article  Google Scholar 

  18. Seguel, J.M., Merrill, R., Seguel, D., Campagna, A.C.: Indoor air quality. Am. J. Lifestyle Med. 11(4), 284–295 (2016). https://doi.org/10.1177/1559827616653343

    Article  Google Scholar 

  19. Tsai, W.-T.: Overview of green building material (GBM) policies and guidelines with relevance to indoor air quality management in Taiwan. Environments 5, 4 (2017). https://doi.org/10.3390/environments5010004

    Article  Google Scholar 

  20. Singleton, R., Salkoski, A.J., Bulkow, L., Fish, C., Dobson, J., Albertson, L., Skarada, J., Ritter, T., Kovesi, T., Hennessy, T.W.: Impact of home remediation and household education on indoor air quality, respiratory visits and symptoms in Alaska native children. Int. J. Circumpolar Health 77, 1422669 (2018). https://doi.org/10.1080/22423982.2017.1422669

    Article  Google Scholar 

  21. Bruce, N., Pope, D., Rehfuess, E., Balakrishnan, K., Adair-Rohani, H., Dora, C.: WHO indoor air quality guidelines on household fuel combustion: strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 106, 451–457 (2015). https://doi.org/10.1016/j.atmosenv.2014.08.064

    Article  Google Scholar 

  22. Azmoon, H., Dehghan, H., Akbari, J., Souri, S.: The relationship between thermal comfort and light intensity with sleep quality and eye tiredness in shift work nurses. J. Environ. Public Health 2013, 1–5 (2013). https://doi.org/10.1155/2013/639184

    Article  Google Scholar 

  23. Gropper, E.I.: Promoting health by promoting comfort. Nurs. Forum 27, 5–8 (1992). https://doi.org/10.1111/j.1744-6198.1992.tb00905.x

    Article  Google Scholar 

  24. Xue, P., Mak, C.M., Cheung, H.D.: The effects of daylighting and human behavior on luminous comfort in residential buildings: a questionnaire survey. Build. Environ. 81, 51–59 (2014). https://doi.org/10.1016/j.buildenv.2014.06.011

    Article  Google Scholar 

  25. Hwang, T., Kim, J.T.: Effects of indoor lighting on occupants’ visual comfort and eye health in a green building. Indoor Built Environ. 20, 75–90 (2011). https://doi.org/10.1177/1420326X10392017

    Article  Google Scholar 

  26. Marques, G., Roque Ferreira, C., Pitarma, R.: A system based on the Internet of Things for real-time particle monitoring in buildings. Int. J. Environ. Res. Public Health 15, 821 (2018). https://doi.org/10.3390/ijerph15040821

    Article  Google Scholar 

  27. Feria, F., Salcedo Parra, O.J., Reyes Daza, B.S.: Design of an architecture for medical applications in IoT. In: Luo, Y. (ed.) Cooperative Design, Visualization, and Engineering, pp. 263–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46771-9_34

    Chapter  Google Scholar 

  28. Marques, G., Pitarma, R.: A cost-effective air quality supervision solution for enhanced living environments through the Internet of Things. Electronics 8, 170 (2019). https://doi.org/10.3390/electronics8020170

    Article  Google Scholar 

  29. Marques, G., Ferreira, C.R., Pitarma, R.: Indoor air quality assessment using a CO2 monitoring system based on Internet of Things. J. Med. Syst. 43, 67 (2019). https://doi.org/10.1007/s10916-019-1184-x

    Article  Google Scholar 

  30. Marques, G., Pitarma, R.: mHealth: indoor environmental quality measuring system for enhanced health and well-being based on Internet of Things. JSAN 8, 43 (2019). https://doi.org/10.3390/jsan8030043

    Article  Google Scholar 

  31. Marques, G., Pitarma, R.: Noise monitoring for enhanced living environments based on Internet of Things. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies, pp. 45–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_5

    Chapter  Google Scholar 

  32. Marques, G., Pitarma, R.: Noise mapping through mobile crowdsourcing for enhanced living environments. In: Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A. (eds.) Computational Science – ICCS 2019, pp. 670–679. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_52

    Chapter  Google Scholar 

  33. Marques, G., Pitarma, R.: Air quality through automated mobile sensing and wireless sensor networks for enhanced living environments. In: 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, pp. 1–7. IEEE (2019). https://doi.org/10.23919/CISTI.2019.8760641

  34. Shah, J., Mishra, B.: IoT enabled environmental monitoring system for smart cities. In: 2016 International Conference on Internet of Things and Applications (IOTA), Pune, pp. 383–388. IEEE (2016). https://doi.org/10.1109/IOTA.2016.7562757

  35. Salamone, F., Belussi, L., Danza, L., Galanos, T., Ghellere, M., Meroni, I.: Design and development of a nearable wireless system to control indoor air quality and indoor lighting quality. Sensors 17, 1021 (2017). https://doi.org/10.3390/s17051021

    Article  Google Scholar 

  36. Bhattacharya, S., Sridevi, S., Pitchiah, R.: Indoor air quality monitoring using wireless sensor network. Presented at the December (2012). https://doi.org/10.1109/ICSensT.2012.6461713

  37. Zheng, K., Zhao, S., Yang, Z., Xiong, X., Xiang, W.: Design and implementation of LPWA-based air quality monitoring system. IEEE Access 4, 3238–3245 (2016). https://doi.org/10.1109/ACCESS.2016.2582153

    Article  Google Scholar 

  38. Gao, Y., Dong, W., Guo, K., Liu, X., Chen, Y., Liu, X., Bu, J., Chen, C.: Mosaic: a low-cost mobile sensing system for urban air quality monitoring. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, San Francisco, pp. 1–9. IEEE (2016). https://doi.org/10.1109/INFOCOM.2016.7524478

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques, G., Pitarma, R. (2020). Enabling Smart Homes Through Health Informatics and Internet of Things for Enhanced Living Environments. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-45697-9_8

Download citation

Publish with us

Policies and ethics