
Mathematical Programming
https://doi.org/10.1007/s10107-021-01689-0

FULL LENGTH PAPER

Series B

Sparse graphs and an augmentation problem

Csaba Király1,2 · András Mihálykó1

Received: 25 June 2020 / Accepted: 28 June 2021
© The Author(s) 2021

Abstract
For two integers k > 0 and�, a graphG = (V , E) is called (k, �)-tight if |E | = k|V |−�

and iG(X) ≤ k|X |−� for each X ⊆ V for which iG(X) ≥ 1, where iG(X) denotes the
number of induced edges by X . G is called (k, �)-redundant if G − e has a spanning
(k, �)-tight subgraph for all e ∈ E . We consider the following augmentation problem.
Given a graph G = (V , E) that has a (k, �)-tight spanning subgraph, find a graph
H = (V , F)with the minimum number of edges, such thatG∪H is (k, �)-redundant.
Wegive a polynomial algorithmand amin-max theorem for this augmentation problem
when the input is (k, �)-tight. For general inputs, we give a polynomial algorithmwhen
k ≥ � and show the NP-hardness of the problemwhen k < �. Since (k, �)-tight graphs
play an important role in rigidity theory, these algorithms can be used to make several
types of rigid frameworks redundantly rigid by adding a smallest set of new bars.

Keywords Augmentation · Sparse graphs · Rigidity · Count matroid

Mathematics Subject Classification 52C25 · 05B35 · 68R10

1 Introduction

Let k be a positive integer and � be an integer such that � < 2k. A (multi)graph
G = (V , E) is called (k, �)-sparse if iG(X) ≤ k|X | − � for all X ⊆ V for which

This paper is a full version of Cs. Király, A. Mihálykó: Sparse graphs and an augmentation problem. D.
Bienstock and G. Zambelli (Eds.): IPCO 2020, LNCS 12125, pp. 238–251, 2020.

B Csaba Király
cskiraly@cs.elte.hu

András Mihálykó
mihalyko@cs.elte.hu

1 Department of Operations Research, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C,
Budapest 1117, Hungary

2 MTA-ELTE Egerváry Research Group on Combinatorial Optimization, Eötvös Loránd Research
Network (ELKH), Pázmány Péter sétány 1/C, Budapest 1117, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01689-0&domain=pdf
http://orcid.org/0000-0001-8081-9056
https://orcid.org/0000-0002-0624-655X

Cs. Király, A. Mihálykó

iG(X) > 0, where iG(X) denotes the number of edges of G induced by X ⊆ V .
A (k, �)-sparse graph is called (k, �)-tight if |E | = k|V | − �. A graph G is called
(k, �)-rigid ifG has a (k, �)-tight spanning subgraph.We call an edge e ofG a (k, �)-
redundant edge if G − e is (k, �)-rigid. A graph G is a (k, �)-redundant graph if
each edge of G is (k, �)-redundant. We consider the following problem that we call
the general (augmentation) problem.

Problem Let k and � be integers with k > 0 and � < 2k and let G = (V , E) be a
(k, �)-rigid graph. Find a graph H = (V , F) on the same vertex set with minimum
number of edges, such that G ∪ H = (V , E ∪ F) is (k, �)-redundant.

We call the special case of this problem, where the input graph G is (k, �)-tight, the
reduced (augmentation) problem. In this paper, we give a min-max theorem and an
O(|V |2) time algorithm for the reduced problem for each pair of k and �. We also
show how this algorithm can be extended to solve the general problem in the same
running time when � ≤ k. In contrast, we show that the general problem is NP-hard
whenever � > k.

Sparsity properties are important in rigidity theory as they can be used in the charac-
terization of many rigidity classes. For example, the generically rigid graphs in R

2 are
exactly the (2, 3)-rigid graphs by the fundamental theorems of Pollaczek-Geiringer
[24] and Laman [18]. The ‘body-bar graph’ induced by a given graph G is generi-

cally rigid in R
d if and only if G is

((d+1
2

)
,
(d+1

2

))
-rigid by Tay’s theorem [26]. Note

that G is (k, k)-rigid if and only if G contains k edge-disjoint spanning trees by the
fundamental result of Nash-Williams [22].

Besides the effect of redundancy, redundant rigidity is an important concept in
rigidity theory since variants of Hendrickson’s result [9] show that redundant rigidity
is often a necessary condition for ‘global rigidity’ which plays a crucial role in many
applications [1,28,29]. Furthermore, in some cases, for example for ‘body-bar graphs’
(see [3]), redundant rigidity is also a sufficient condition for global rigidity. It is thus
natural to ask how many new edges are needed to make a rigid graph redundantly
rigid.

There are special pairs of k and � for which these problems were already investi-
gated. The general problem for (1, 1)-rigid graphs is a special case of the well-studied
2-edge-connectivity augmentation problem solved by Eswaran and Tarjan [4]. The
general problem for k = � was solved by Frank and T. Király [7] who gave a poly-
nomial algorithm to augment an arbitrary graph to an h-times (k, k)-redundant graph
using polyhedral techniques (where h-times (k, k)-redundant means that it remains
(k, k)-rigid after deleting any set of its edges of cardinality h). The algorithm, that will
be presented here, is a more efficient solution for this problem, however, it does not
deal with the case of h ≥ 2 and also the (k, k)-rigidity of the input is needed. García
and Tejel [8] showed that the general problem is NP-hard for (2, 3)-rigid graphs but
can be solved in polynomial time for (2, 3)-tight graphs. We use similar techniques to
[8], however, our method is based on a newmin-max theorem for the reduced problem,
as follows.

For a (k, �)-tight graph G = (V , E), we call a set of vertices ∅ �= C � V (k, �)-
co-tight in G if the complement of C induces a (k, �)-tight subgraph of G. We will

123

Sparse graphs and an augmentation problem

Fig. 1 The solid edges form a (3, 4)-tight graph G. The three highlighted sets are pairwise disjoint (3, 4)-
co-tight sets in G, hence no single edge augments G to a (3, 4)-redundant graph by Theorem 1.1. However,
it is easy to check that the addition of the two edges uv and ux makes all edges of G (3, 4)-redundant, and
hence this gives rise to an optimal solution of the reduced problem on G. For example, after the addition of
the dashed edge ux we get a (3, 4)-rigid graph where ux and the bold edges are the only (3, 4)-redundant
edges

see that it is possible that there is no (k, �)-co-tight set in G in which case G + uv is
(k, �)-redundant for any u, v ∈ V . Our main result is the following min-max theorem
which is illustrated by Fig. 1.

Theorem 1.1 Let G = (V , E) be a (k, �)-tight graph on at least k2 + 3 vertices. If
there exists any (k, �)-co-tight set in G, then

min{|F | : H = (V , F) is a graph for which G ∪ H is (k, �) − redundant}
= max

{⌈ |C|
2

⌉
: C is a family of disjoint (k, �)-co-tight sets inG

}
.

To obtain the solution for the general problem by using the reduced problem when
k ≥ �, we need more general concepts. The idea of our method comes from Jackson
and Jordán [10] who proved that the (k, k)-redundant edges of a (k, k)-rigid graph Ḡ
form induced subgraphs of Ḡ with disjoint vertex sets. If we contract these subgraphs
into single vertices one can show that the resulting graph is (k, k)-tight for which we
can use the algorithm of the reduced problem. In order to extend this idea for � < k,
we need the following generalization of sparsity. Let � ∈ Z and m : V → Z+ be a
map where Z+ denotes the set of non-negative integers. A graph G = (V , E) is called
(m, �)-sparse if iG(X) ≤ m(X) − � holds for every X ⊆ V for which m(X) − � ≥ 0
and iG(X) = 0 otherwise, where m(X) := ∑

v∈X m(v). Observe that each subgraph
of an (m, �)-sparse graph is (m, �)-sparse. To ensure that the condition m(X)− � ≥ 0
holds (usually with strict inequality) for each set X ⊆ V with |X | ≥ 2, we take the
following assumption throughout this paper.

(*) (A0) � ∈ Z and m : V → Z+ such that, for each pair u, v ∈ V with u �= v, either
m(u) + m(v) > � or m(u) = m(v) = � = 0 holds.

Note that,whenm ≡ k, an (m, �)-sparse graph is (k, �)-sparse and (A0) holds byour
assumption that � < 2k. (m, �)-tight/rigid/redundant graphs and (m, �)-co-tight

123

Cs. Király, A. Mihálykó

sets can be defined by extending the definitions of (k, �)-tight/rigid/redundant graphs
and (k, �)-co-tight sets similarly. For simplicity, we call a set X ⊆ V (m, �)-tight
((k, �)-tight, respectively) in G if G[X] is (m, �)-tight ((k, �)-tight, respectively).
Here G[X] denotes the subgraph of G induced by X for X ⊆ V . Note that (A0)
implies that each (m, �)-tight set X in G of cardinality at least two induces at least one
edge in G, except when � = 0 and m(x) = 0 for each x ∈ X . When the pair (m, �)

((k, �), respectively) is clear from the context we may omit the prefix (m, �) ((k, �),
respectively) from the notions above.

We will see in Sect. 3 that, after using the above contraction idea for (k, �)-rigid
graphs with k > �, the resulting graph G ′ = (V ′, E ′) on which we need to solve the
reduced problem is (m′, �′)-tight for some m′ : V ′ → Z+ and �′ ∈ Z for which (A0)
holds. Hencewewill prove an extension of Theorem1.1 for (m, �)-tight graphs in Sect.
5 and we will give our algorithm for the reduced problem in Sect. 6 for (m, �)-tight
inputs.

1.1 Notation

All the graphs in this paper are multigraphs, that is, we allow parallel edges and loops.
For simplicity, we do not distinguish graphs and their edge sets when it is clear from
the context. Given a graph G = (V , E), dG(v) denotes the number of edges incident
to a vertex v ∈ V , dG(X,Y) denotes the number of edges between X − Y and Y − X
for X ,Y ⊆ V , dG(X) := dG(X , V − X), and eG(X) := iG(X) + dG(X). Note that
our definition implies that dG(v) �= dG({v}) if there is a loop incident with v. Also
note that, in the usual definition of the degree, loop edges count twice for the degree
of a vertex, however, we only count them once. We use NG(X) to denote the neighbor
set of X ⊆ V , that is, NG(X) = {v ∈ V − X : dG({v}, X) ≥ 1}, and G/X to denote
the graph arising from G by contracting X into a single vertex and deleting all the
edges spanned by X . We can similarly define D/X for a directed graph D. If G1 and
G2 are graphs, then G1 ⊆ G2 denote that G1 is a subgraph of G2. When it is clear
from the context, we omit the subscript G from the notation.

2 Preliminaries

In this section, we list some basic properties of (m, �)-sparse graphs. We sketch their
proofs for completeness. It follows from the definition that an (m, �)-tight subgraph
of an (m, �)-sparse graph is always an induced subgraph. Therefore, if T1 = (V1, E1)

and T2 = (V2, E2) both are (m, �)-tight subgraphs of an (m, �)-sparse graph G, then
T1 ∩ T2 = (V1 ∩ V2, E1 ∩ E2) is also an induced subgraph of G. Moreover, with
standard submodular techniques we can prove the following.

Lemma 2.1 Let G = (V , E) be an (m, �)-sparse graph, and let T1 = (V1, E1) and
T2 = (V2, E2) be (m, �)-tight subgraphs of G. If m(V1 ∩ V2) ≥ �, then T1 ∪ T2 is an
(m, �)-tight graph and d(V1, V2) = 0. Furthermore, if |V1 ∩ V2| ≥ 1, then T1 ∩ T2 is
(m, �)-tight as well.

123

Sparse graphs and an augmentation problem

Note that the assumption on m(V1 ∩ V2) always holds when |V1 ∩ V2| ≥ 2 by (A0),
and also when � ≤ 0 (since m ≥ 0).

Proof As T1 and T2 are (m, �)-tight, i(V1 ∪ V2) + i(V1 ∩ V2) = i(V1) + i(V2) +
d(V1, V2) ≥ i(V1)+i(V2) = m(V1)−�+m(V2)−� = m(V1∪V2)−�+m(V1∩V2)−�.

Note thatm(V1 ∩V2) ≥ �. Hence, as G is an (m, �)-sparse graph, i(V1 ∪V2)+ i(V1 ∩
V2) ≤ m(V1 ∪ V2) − � + m(V1 ∩ V2) − � holds thus equality stands in all the above
inequalities. This proves the statement.
�

The (m, �)-tight graphs have the following connectivity property.

Lemma 2.2 Let G = (V , E) be an (m, �)-tight graph with |V | ≥ 3 and let v ∈ V
with 0 < m(v) < �. Then no loop is incident with v and d(v) ≥ m(v).

Proof Note that v cannot induce any loop by the (m, �)-sparsity condition. Hence the
(m, �)-tightness of G, the (m, �)-sparsity of V − v and (A0) imply that m(V) − � =
i(V) = d(v) + i(V − v) ≤ d(v) + m(V − v) − � = m(V) − � − m(v) + d(v) thus
d(v) ≥ m(v). Notice that this also means that v is connected to V − v.
�

It is known that the edge sets of the (m, �)-sparse subgraphs of a given graph
form a matroid, called the (m, �)-sparsity matroid or count matroid, which is a
straightforward generalization of the well-known 2-dimensional rigidity matroid (see
Frank [6, Sect. 13.5], Lorea [20], and Whiteley [27, Appendix A]). A circuit of this
matroid is called an (m, �)-circuit. By other words, a graph C is an (m, �)-circuit
if it is not (m, �)-sparse and C − e is (m, �)-sparse for every single edge e of C .
It follows from matroid theory (see details in [6, Chapt. 5]) that for an (m, �)-sparse
graphG = (V , E) and i, j ∈ V for whichG+ i j is not (m, �)-sparse,G+ i j contains
a unique (m, �)-circuitCG

(m,�)(i j). In this case, T
G
(m,�)

(i j) := CG
(m,�)(i j)− i j is (m, �)-

tight. (Note that CG
(m,�)(i j) consists of the single edge i j whenm(i) = m(j) = � = 0,

and hence TG
(m,�)(i j) consists of only two isolated vertices i and j in this case, however,

this subgraph of G is (m, �)-tight.) Let VG
(m,�)

(i j) denote the vertex set of T G
(m,�)(i j).

(Recall that we do not distinguish graphs and their edge sets, hence TG
(m,�)(i j) may

be used to denote both a subgraph and its edge set.) For every edge e′ of CG
(m,�)(i j),

G ′ = G+ i j −e′ is also (m, �)-sparse and the unique (m, �)-circuit of G ′ +e′ is again
CG

(m,�)(i j). Moreover, if e′′ /∈ CG
(m,�)(i j), then, G

′ + i j − e′′ is not (m, �)-sparse. The

main property of T G
(m,�)(i j) is the following. It will be used several times in this paper.

Lemma 2.3 Let G = (V , E) be an (m, �)-sparse graph and let i, j ∈ V . Assume that
G + i j is not (m, �)-sparse. If G ′ = (V ′, E ′) is an (m, �)-tight subgraph of G with
i, j ∈ V ′, then T G

(m,�)(i j) ⊆ G ′. Hence T G
(m,�)(i j) = ⋂{Th : Th is an (m, �)-tight

subgraph of G including i and j}.
�
Let RG

(m,�)
(i1 j1, . . . , ir jr) denote the subgraph of G = (V , E) induced by the

edges of E which are (m, �)-redundant in G ∪ {i1 j1, . . . , ir jr } where i1, . . . , ir ,
j1, . . . , jr ∈ V . For the sake of simplicity, when the graph G or (m, �) is clear from
the context, we will omit the superscript G or subscript (m, �), respectively, from all
of the above notation. Note that R(i j) = T (i j) for any i, j ∈ V . (See Fig. 1 for an

123

Cs. Király, A. Mihálykó

example, where the bold edges form RG
(3,4)(ux) = TG

(3,4)(ux).) The following lemma
extends this simple fact by generalizing [8, Lemma 4] .

Lemma 2.4 If G is an (m, �)-tight graph, then

R(i1 j1, . . . , ir jr) = T (i1 j1) ∪ · · · ∪ T (ir jr).

Proof Since R(i j) = T (i j), T (i1 j1) ∪ · · · ∪ T (ir jr) ⊆ R(i1 j1, . . . , ir jr). For the
other direction, let e ∈ R(i1 j1, . . . , ir jr) be an arbitrary edge. Now, G − e is (m, �)-
sparse and |E − e| = m(V) − � − 1. G ∪ {i1 j1, . . . , ir jr } − e is (m, �)-rigid, hence
E ∪ {i1 j1, . . . , ir jr } − e has a rank of m(V) − � in the (m, �)-sparsity matroid. Thus
there is an edge f in {i1 j1, . . . , ir jr } for which E − e + f is a basis of the (m, �)-
sparsity matroid. Since E − e + f is independent in the (m, �)-sparsity matroid, we
must have e ∈ T (f).
�

As mentioned in the introduction, the main advantage of (m, �)-tight graphs over
(k, �)-tight graphs is that an (m, �)-tight graph remains (m′, �′)-tight after contracting
an (m, �)-tight subgraph for some pair (m′, �′), as follows.

Lemma 2.5 Let G = (V , E) be an (m, �)-tight graph. Suppose that T � V is an
(m, �)-tight set in G. Let t ′ be the new vertex that arises after contracting T in G. Let
�′ := max(�, 0) and let m′ : V (G/T) → Z+ be a map such that m′(v) = m(v) when
v ∈ V (G/T) ∩ V and m′(t ′) = �′.

(a) A set S ⊆ V (G/T) containing t ′ induces an (m′, �′)-tight subgraph of G/T if
and only if (S − t ′) ∪ T is (m, �)-tight in G. In particular, G/T is (m′, �′)-tight.

(b) A set S ⊆ V (G/T) − t ′ is (m′, �′)-tight in G/T if and only if either � ≥ 0 and
S is (m, �)-tight in G, or � < 0 and S ∪ T is (m, �)-tight in G such that d(S, T) = 0.

Proof First, it is easy to see that, if the pair (m, �) satisfies (A0), then so does (m′, �′),
as the values of m′ cannot decrease compared to the values of m.

(a) Let us show that G/T is (m′, �′)-sparse. Let X ⊆ V (G/T). Assume first that
t ′ ∈ X . Then iG/T (X) = iG((X−t ′)∪T)−iG(T) ≤ m((X−t ′)∪T)−�−(m(T)−�) =
m(X − t ′) = m′(X) − m′(t ′) = m′(X) − �′ as T is (m, �)-tight. If t ′ /∈ X and � ≥ 0,
then iG/T (X) = iG(X) ≤ max(m(X) − �, 0) = max(m′(X) − �′, 0). If t ′ /∈ X and
� < 0, then iG/T (X) = iG(X) ≤ iG(X∪T)− iG(T) ≤ m(X∪T)−�−(m(T)−�) =
m(X) = m′(X) − �′. Hence G/T is (m′, �′)-sparse.

Assume now t ′ ∈ S ⊆ V (G/T). By the (m′, �′)-sparsity of G/T , the tightness of
S means that iG/T (S) = m′(S)− �′ = m(S− t ′). Since iG(T) = m(T)− �, replacing
t ′ with T results iG((S − t ′) ∪ T) = m((S − t ′) ∪ T) − �. The proof of the other
direction is similar.

(b) First assume that � ≥ 0 and t ′ /∈ S ⊆ V (G/T). Suppose S is (m′, �′)-tight.
Then the (m′, �′)-sparsity of G/T means that iG/T (S) = m′(S) − �′ = m(S) − �.
On the other hand, the (m, �)-tightness of S means that iG(S) = m(S) − �. Since
iG(S) = iG/T (S), these two are equivalent.

Now if � < 0 and t ′ /∈ S ⊆ V (G/T). Suppose S is (m′, �′)-tight. Then the (m′, �′)-
sparsity ofG/T means that iG/T (S) = m′(S)−�′ = m(S)−0. Since T is (m, �)-tight
and iG(S) = iG/T (S),m(S)+m(T)−� ≥ iG(S∪T) = iG(S)+ iG(T)+dG(S, T) ≥

123

Sparse graphs and an augmentation problem

(m(S) − 0) + (m(T) − �) + 0 follows, and hence equality must hold throughout, that
is, iG(S ∪ T) is (m, �)-tight and dG(S, T) = 0. The proof of the other direction is
similar.
�

2.1 Algorithmic preliminaries

To give a polynomial algorithm for our (general or reduced) augmentation problem,
one first needs a polynomial algorithm for testing the (m, �)-sparsity of a graph. Such
an algorithm already exists for each pair of m and � (see the works of Hendrickson,
Jacobs and Thorpe [12,13] and Berg and Jordán [2] for the case where k = 2 and
� = 3, the paper of Lee and Streinu [19] for general k and � ≥ 0, the book of Frank
[6, Sect. 13.5.4] for the (m, �) case, and the note of the first author [17] for the case
of � < 0). All the above mentioned algorithms are based on in-degree constrained
orientations (see [6, Lemma 13.5.9]).

We note that in the main applications of (k, �)-sparse graphs k and � are fixed
constants thus we may assume the following condition.

(∗) There exists a (universal) constant c > 0 such that m(v) ≤ c for every v ∈ V for
every graph G = (V , E). We may also suppose that |�| ≤ c.

We give the running time of our algorithms by assuming this condition. Observe that
(*) implies that an (m, �)-sparse graph on V has O(|V |) edges. For a directed graph
D, let �D(v) denote the in-degree of a vertex v. We shall use the algorithm provided by
the following theorem (which can be constructed based on the algorithms in [6,17,19])
as a subroutine in our algorithms.

Theorem 2.6 (Based on [6,17,19]) (a) There exists an algorithm which decides in
O(|V |2) timewhether its input graphG = (V , E) is (m, �)-sparse. It has the following
outputs:

If G is (m, �)-sparse, then it outputs this fact along with an orientation D of the
edges in G minus a set F ′ ⊆ E of at mostmax(−�, 0) edges, such that �D(v) ≤ m(v)

holds for each v ∈ V . If G is also (m, �)-tight, then it also outputs this fact.
If G is not (m, �)-sparse, then it outputs a maximal (m, �)-sparse subgraph H =

(V , F) of G alongwith an orientation D of the edges in H minus a set F ′ ofmax(−�, 0)
edges, such that �D(v) ≤ m(v) holds for each v ∈ V . It also outputs the set R of
edges in H which are (m, �)-redundant in G.

(b) Furthermore, if G is (m, �)-sparse (including the case when G is (m, �)-tight),
then by only using the in-degree constrained orientation D, one can decide in O(|V |)
extra time whether G + e is (m, �)-sparse for any new edge e, and if the answer is no,
then output the (m, �)-tight subgraph T (e) of G.
�

3 The reduction of the general problem

García and Tejel [8] showed that the general augmentation problem is NP-hard for
(2, 3)-rigid graphs by reducing it to the set cover problem. Based on their method we
will prove in Sect. 7 the NP-hardness of the general problem whenever k < �. In this

123

Cs. Király, A. Mihálykó

section we show that, in any other case (that is, if � ≤ k), there exists an O(|V |2)
time reduction from the general problem to the reduced problem that we shall solve in
Sects. 5 and 6. Moreover, we give our reduction for all (m, �)-rigid graphs for which
m(v) ≥ � for all v ∈ V (or m ≥ � for the sake of brevity).

Throughout this section, let Ḡ = (V , Ē) denote an (m, �)-rigid graph with m ≥ �

and G = (V , E) denote an (m, �)-tight spanning subgraph of Ḡ. Obviously, every
edge in Ē − E is (m, �)-redundant in Ḡ. By Lemma 2.4, the (m, �)-redundant edges
of G in Ḡ are the edges of RG(Ē − E) = ⋃

e∈Ē−E T G(e). Since m ≥ �, these edges
induce vertex disjoint (m, �)-tight subgraphs in G by Lemmas 2.1 and 2.4. (Note that
we have only one such subgraph which may be disconnected when � ≤ 0, and these
subgraphs are exactly the connected components of RG(Ē − E) when � > 0.) By
contracting each of these subgraphs to a single vertex and by defining �′ as max(�, 0)
andm′ to be �′ on each of the contracted vertices and to bem(v) on each non-contracted
vertex v, we get the contracted graphG ′ = (V ′, E ′) alongwith themapm′ : V ′ → Z+.
Notice, that this contraction yields a natural surjective map, s : V → V ′. By using
Lemma 2.5(a) for each contracted tight subgraph of G sequentially it is easy to see
that G ′ is (m′, �′)-tight. We can state even more.

Proposition 3.1 If X ′ ⊆ V ′ induces an (m′, �′)-tight subgraph of G ′, then s−1(X ′)
induces an (m, �)-tight subgraph in V , or, when � < 0, it becomes (m, �)-tight if we
take its union with the vertices of the sole contracted (m, �)-tight subgraph of G (that
is, to V − V ′).

Conversely, if X ⊆ V induces an (m, �)-tight subgraph of G, then s(X) induces an
(m′, �′)-tight subgraph in V ′, and, when � < 0, it contains the only contracted vertex
(that is, the single element of V ′ − V).

Proof The first statement follows directly by using Lemma 2.5 (b) for each contracted
tight subgraph of G sequentially. For the second statement, let X∗ be the union of
X and all the contracted components Vi ’s for which X ∩ Vi �= ∅. Then X∗ induces
an (m, �)-tight subgraph of G by Lemma 2.1 and s(X∗) = s(X) is (m′, �)-tight by
Lemma 2.5. (Note that if � < 0, then X must intersect the single contracted component
V1 since otherwise X ∪ V1 violates the (m, �)-sparsity condition as iG(X ∪ V1) ≥
iG(X) + iG(V1) = m(X) − � + m(V1) − � > m(X ∪ V1) − �.)
�

If the union of some (m, �)-tight subgraphs of G contains every edge of Ḡ which
is not (m, �)-redundant, then by Proposition 3.1 the union of corresponding (m′, �′)-
tight subgraphs of G ′ is G ′ itself. Hence the minimum number of edges that we need
to make Ḡ (m, �)-redundant is at least the minimum number of edges that we need to
make G ′ (m′, �′)-redundant. The following statement shows that these two values are
equal.

Proposition 3.2 Let F ′ denote an edge set of minimum cardinality on V ′ for which
G ′+F ′ is (m′, �′)-redundant. Let F be an arbitrary edge set on V forwhich {s(u)s(v) :
uv ∈ F} = F ′. Then Ḡ + F is (m, �)-redundant.

Proof Given u, v ∈ V , s(TG
(m,�)(uv)) is an (m′, �)-tight subgraph of G ′ that contains

both s(u) and s(v) by Proposition 3.1. Thus it is a supergraph of TG ′
(m′,�′)(s(u)s(v)) by

123

Sparse graphs and an augmentation problem

Lemma 2.3. Since the image of each non-(m, �)-redundant edge of Ḡ is in G ′ and the
subgraphs {TG ′

(m′,�)(s(u)s(v)) : s(u)s(v) ∈ F ′} cover the edge set of G ′, the subgraphs
{TG

(m,�)(uv) : uv ∈ F} cover every non-(m, �)-redundant edge of Ḡ. Hence Ḡ + F is
(m, �)-redundant by Lemma 2.4.
�

With Proposition 3.2, we have reduced the problem of augmenting an (m, �)-rigid
graph to an (m, �)-redundant graph to the problem of augmenting an (m′, �′)-tight
graph to an (m′, �′)-redundant graph. It is easy to check that (A0) still holds after the
reduction. Based on Theorem 2.6 the reduction can be done in O(|V |2) time. Note
that when we get a solution for the arisen reduced problem, we can get back a solution
to the original problem in linear time. This implies the following.

Theorem 3.3 Let m : V → Z+ and � ∈ Z for which m ≥ � and (*) hold, and let
Ḡ = (V , Ē) be an (m, �)-rigid graph. In O(|V |2) time, we can reduce the solution of
the general augmentation problem on Ḡ to the solution of the reduced problem on an
(m′, �′)-tight graph on a vertex set of cardinality at most |V |.
�

4 Preprocessing

Our goal is to provide a solution for the reduced problem for all (m, �)-tight graphs,
however, it is easier to formulate our results by assuming the following conditions
when � > 0. Recall, that V (i j) denotes the vertex set of T (i j).

(A) Assuming (A0) and (*) for m and �, G = (V , E) is an (m, �)-tight graph on at
least four vertices such that either � ≤ 0 or all of the following three conditions
hold.

(A1) There exists no v ∈ V such that m(v) = 0 and v is an isolated vertex.
(A2) There exist u, v ∈ V such that V (uv) �= {u, v}.
(A3) There exists no v ∈ V such that V (uv) = {u, v} for all u ∈ V − v and V − v

induces an (m, �)-tight graph.

We note that these conditions automatically hold for (k, �)-tight graphs with suf-
ficiently many vertices, as in this case there is at least one vertex-pair u, v ∈ V that
does not induce any edge.

When we consider (m, �)-tight graphs, it is not hard to see by using our conditions
(A0) and (*) that (A2) and (A3) hold for every (m, �)-tight graph on at least c2 + 2
vertices, where c is the constant in (*). Indeed, (A0) and � > 0 (which holds when
we need assumption (A2) and (A3)) imply that, if {u, v} is an (m, �)-tight set in G,
then it induces at least one edge, and hence the denial of (A2) (or (A3), respectively)
contradicts the (m, �)-sparsity of G (or the (m, �)-tightness of G[V − v] and G,
respectively). Note that since c is considered as a constant in our algorithms, the
solution of the reduced problem on less than c2+2 vertices can be provided in constant
time. When G violates (A1), we may delete its isolated vertices with m(v) = 0 and
solve the reduced problem for the arising graph. It is easy to check that the solution of
our augmentation problem on this reduced input is a solution of our original problem.
As reduction can be done in O(|V |2) running time, the assumption of (A) does not
restrict the usability of our results for all (m, �)-tight graphs.

123

Cs. Király, A. Mihálykó

5 Themin-max theorem for the reduced problem

In this section we prove Theorem 1.1 and its extension for (m, �)-tight graphs for
which, throughout this whole section, we assume (A), including that G = (V , E)

is an (m, �)-tight graph on at least 4 vertices. The generalization of Theorem 1.1 for
(m, �)-tight graphs is the following.

Theorem 5.1 If there exists any (m, �)-co-tight set in G, then

min{|F | : H = (V , F) is a graph for which G ∪ H is (m, �)-redundant}
= max

{⌈ |C|
2

⌉
: C is a family of disjoint (m, �)-co-tight sets

}
.

Otherwise, G + uv is (m, �)-redundant for every pair u, v ∈ V .

Recall that we call a set of vertices ∅ �= C � V (m, �)-co-tight inG if iG(V −C) =
m(V −C)−�, that is, if the complement of C is an (m, �)-tight set in G. Equivalently
(by m(V) − � = |E | = eG(C) + iG(V −C)), C is (m, �)-co-tight if eG(C) = m(C).
Note that for every X ⊂ V for which m(V − X) ≥ �, eG(X) ≥ m(X) holds by
the sparsity of V − X . Inclusion-wise minimal (m, �)-co-tight sets will be called
(m, �)-MCT sets. (See Fig. 1 where the three highlighted sets {u}, {v}, and X are the
(3, 4)-MCT sets of the graph G formed by the solid edges.)

Lemma 5.2 Assume that � > 0. Let C be an (m, �)-MCT set and let v ∈ C. Then
m(v) �= 0.

Proof Suppose that m(v) = 0. When |C | = 1, the co-tightness of C implies that
d(v) = 0, contradicting (A1). When |C | ≥ 2, then i(V − (C − v)) ≥ i(V − C) =
m(V − C) − � = m(V − (C − v)) − � follows by the co-tightness of C , hence
V − (C − v) is also tight in G, contradicting the minimality of C .
�
Observation 5.3 Let G = (V , E) be an (m, �)-tight graph and let C ⊂ V be an
(m, �)-co-tight set. If G ∪ H is (m, �)-redundant for H = (V , F), then there exists
an edge uv ∈ F such that u ∈ C or v ∈ C.

Proof If an edge e is not incident with at least one vertex in a co-tight set C , then
V (e) ⊆ V − C by Lemma 2.3. Thus no edge set that avoids C can augment G to
(m, �)-redundant by Lemma 2.4.
�

This observation immediately implies that min ≥ max in Theorem 5.1 since each
co-tight set in C must contain an end-vertex of an edge of H .

We say that a set U covers a set family C, if |U ∩ C | ≥ 1 for every C ∈ C. Let us
denote the family of all (m, �)-MCT sets of G by C∗ from now on.

Lemma 5.4 Suppose that U ⊆ V is a set that covers C∗. If V ′ ⊆ V is a set of vertices
such that U ⊆ V ′ and V ′ induces an (m, �)-tight subgraph in G, then V ′ = V . In
particular, for two vertices u, v ∈ V , the set {u, v} covers C∗ if and only if G + uv is
(m, �)-redundant.

123

Sparse graphs and an augmentation problem

Proof Let us suppose that there exists a tight set V ′
� V in G for which U ⊆ V ′.

Then V − V ′ is co-tight by definition, and hence there exists an MCT set C ∈ C∗
such that C ⊆ V − V ′. However, as U ⊂ V ′, this contradicts the assumption that
|U ∩ C | ≥ 1 for every C ∈ C∗. The ‘only if’ part of the second statement follows
by the first one and the tightness of V (uv) � u, v. The converse direction follows by
Observation 5.3.
�

Note that it is possible that there are no co-tight sets in a graph G. For example,
K6 − e is (3, 4)-tight and there are no (3, 4)-co-tight sets in it. By Lemma 5.4, if there
are no MCT sets in G then G + uv is (m, �)-redundant for any pair u, v ∈ V which
proves the last part of Theorem 5.1. Thus we may suppose that G contains at least
one MCT set. We shall show that in this case min ≤ max also holds. This statement
is obvious when the minimum is one since we assumed the existence of an MCT set
in G. Hence we may assume that the minimum is at least two. We will show that, in
this case, the maximum in Theorem 5.1 is obtained by C∗. The following statement
on the structure of MCT sets shows that the members of C∗ are pairwise disjoint. It
is an extension of a result of Jordán [14, Theorem 3.9.13] that states the same for
(2, 3)-MCT sets.

Theorem 5.5 The members of C∗ are either pairwise disjoint and |C∗| ≥ 3 or there
exists a pair u, v ∈ V such that T (uv) = G, that is, G + uv is (m, �)-redundant.

The proof of Theorem 5.5 requires more involved thoughts, hence we prove it
separately in Sect. 5.1. Now, to finish the proof of Theorem 5.1, we need to show

that G can be augmented to an (m, �)-redundant graph by using a set of
⌈ |C∗|

2

⌉
edges

when at least two edges are needed for the augmentation. Our plan is to add these new
edges between the members of C∗. By Theorem 5.5, we may suppose from now on
that all theMCT sets ofG are pairwise disjoint and |C∗| ≥ 3. In this case the following
stronger result also holds.

Lemma 5.6 Suppose that the members of C∗ are pairwise disjoint and |C∗| ≥ 3. Let
C,C ′ ∈ C∗. Then N (C) ∩ C ′ = ∅.
Proof Suppose first thatm(V−(C∪C ′)) < � (and � > 0). In this case |V−(C∪C ′)| ≤
1 holds by (A0). V �= C ∪ C ′ since there exist at least three MCT sets. Therefore,
V −(C∪C ′) = v for some v ∈ V and v is a co-tight set on its ownwithm(v) < �. (A1)
implies that m(v) > 0 also holds. By Lemma 2.2, there is no loop in G incident with
v. Furthermore, since {v} is co-tight in G, dG(v) = m(v). Note that C ∪{v} = V −C ′
and C ′ ∪ {v} = V −C are tight sets in G each of which must induce at least one edge
incident with v by Lemma 2.2. Since V = C ∪C ′ ∪ {v} and |V | ≥ 4, at least one of C
andC ′, sayC , must contain at least 2 vertices. Hence dG[C∪{v}](v) ≥ m(v) also follows
by Lemma 2.2. But now the disjointness of C and C ′ implies that dG(v) > m(v), a
contradiction.

On the other hand, ifm(V − (C ∪C ′)) ≥ � (e.g. � ≤ 0), then the statement follows
by using Lemma 2.1 for T1 = G[V − C] and T2 = G[V − C ′].
�

As we have noted before, we plan to connect the members of C∗ by the new edges.
Based on the above result, the following statement provides a useful property of the

123

Cs. Király, A. Mihálykó

arising redundant subgraphs. (It canbe illustrated again byFig. 1,where the highlighted
sets are (3, 4)-MCT sets in G and T (ux) is the subgraph formed by the bold edges.)

Lemma 5.7 Let C be an (m, �)-MCT set in G and let u ∈ C and v ∈ V − (C ∪ N (C))

such that m(v) �= 0. Then C ∪ N (C) ⊂ V (uv).

Proof As v /∈ N (u) and m(v) �= 0, condition (A0) implies that {u, v} is not tight in
G.

First we show that C ⊂ V (uv). Note that V − C is maximal amongst all the
proper tight subsets of V , which implies that either V (uv)∪ (V −C) = V , and hence
C ⊂ V (uv) orV (uv)∪(V−C) is not tight inG. In the latter case,V (uv)∩(V−C) = v

and m(v) < � both follow by Lemma 2.1. Thus, since v is not connected to C , the
tightness of T (uv) and the sparsity of G imply that m(V (uv)) − � = i(V (uv)) =
i(v)+ i(V (uv)−v) ≤ 0+m(V (uv)−v)− � = m(V (uv))− �−m(v) contradicting
m(v) > 0. Here i(v) = 0 because m(v) − � < 0.

Now the (m, �)-tightness of V (uv), the (m, �)-sparsity of G, and the co-tightness
of C imply that m(V (uv)) − � = iG(V (uv)) = iG(V (uv) − C) + eT (uv)(C) ≤
iG(V (uv) − C) + eG(C) ≤ m(V (uv) − C) − � + m(C). Hence equality must hold
throughout, in particular, eT (uv)(C) = eG(C) implying N (C) ⊂ V (uv).
�

A set X is called a transversal of a family S if |X ∩ S| = 1 for each S ∈ S. Note
that a transversal of C∗ can be easily constructed by taking one arbitrary element of
each member of C∗ when the members of C∗ are pairwise disjoint. Next we show that
any connected graph on a transversal of C∗ augments G to an (m, �)-redundant graph,
that is, |C∗| − 1 edges are enough for the augmentation.

Lemma 5.8 Suppose that the members of C∗ are pairwise disjoint and |C∗| ≥ 3. Let
X be a transversal of C∗ and let F be an edge set which induces a connected graph
on Y ⊆ X. Then R(F) is the minimal (m, �)-tight subgraph inducing all elements of
Y . In particular, if F is the edge set of a star K1,|X |−1 on the vertex set X, then G + F
is (m, �)-redundant.

Proof Recall that, R(F) denotes the set of (m, �)-redundant edges of G in G + F ,
and Lemma 2.4 claims that R(F) = ⋃

f ∈F T (f). Let us use induction on |F |. If
F = {yy′}, then R(F) = T (yy′) which is the minimal (m, �)-tight subgraph of G
containing both of y and y′ by Lemma 2.3.

Let yy′ ∈ F such that F − yy′ is connected. If y, y′ ∈ V (R(F − yy′)), then by
Lemma 2.3, T (yy′) ⊆ R(F − yy′).

We may assume now that {y, y′} � V (R(F − yy′)) and, by switching the role
of y and y′ we may suppose that y ∈ V (F − yy′). Let y′′ ∈ V (F − yy′) − y.
By induction, R(F − yy′) is a tight subgraph of G which induces each element of
V (F − yy′), in particular, it induces y and y′′. Thus by Lemma 2.3, T (yy′′) is a
subgraph of R(F − yy′).

Assume that the vertices y, y′, y′′ ∈ Y are elements of the sets C,C ′,C ′′ ∈ C∗,
respectively. Lemmas 5.6 and 5.7 imply that C ∪ N (C) ⊆ V (yy′) and C ∪ N (C) ⊆
V (yy′′) ⊆ V (R(F − yy′)). Note that iG(C) ≤ m(C) − � by (m, �)-sparsity and
eG(C) = m(C) by the co-tightness of C in G. Hence N (C) �= ∅ and |C ∪ N (C)| ≥ 2

123

Sparse graphs and an augmentation problem

Fig. 2 Illustrations of Lemma 5.9

holds when � > 0. Therefore, m(V (yy′) ∩ V (R(F − yy′))) ≥ m(C ∪ N (C)) ≥ �

always holds, and Lemma 2.1 implies that R(F − yy′) ∪ T (yy′) is tight. This implies
that R(F) is tight since R(F) = R(F − yy′) ∪ T (yy′) follows by Lemma 2.4. Note
that Y ⊆ R(F) is obvious by Y = V (F).

Let now T be the minimal tight subgraph of G which induces all elements of Y .
Lemma 2.3 implies that T (f) ⊆ T for each f ∈ F . Hence it follows by Lemma 2.4
that R(F) = ⋃

f ∈F T (f) ⊆ T , that is, R(F) = T .
Finally, observe that Lemma 5.4 and the tightness of R(F) imply that, if F induces

the whole set X (in particular, when it is a star on X), then R(F) = G.
�
The cardinality of the edge set provided by Lemma 5.8 can be decreased by itera-

tively using the following statement.

Lemma 5.9 Suppose that the members of C∗ are pairwise disjoint and |C∗| ≥ 4. Let
y, x1, x2, x3 be elements of distinct members of C∗. Let T ∗ = T (yx1) ∪ T (yx2) ∪
T (yx3). Then T ∗ = T (yx1) ∪ T (x2x3) or T ∗ = T (yx3) ∪ T (x1x3) holds.

Proof Let us suppose that T ∗ �= T (yx1) ∪ T (x2x3). Thus there exists an edge e for
which e ∈ T ∗ and e /∈ T (yx1) ∪ T (x2x3).

Lemmas 2.4 and 5.8 imply that T ∗ is the minimal tight subgraph of G inducing all
of y, x1, x2, and x3. However, they similarly imply that this statement also holds for
T (yx1)∪T (x2x3)∪T (yx3) and T (yx1)∪T (x2x3)∪T (x1x2), that is, these two graphs
both are equal to T ∗. Since e ∈ T ∗ and e /∈ T (yx1) ∪ T (x2x3), we get e ∈ T (yx3)
and e ∈ T (x1x2). (See Fig. 2.)

Lemma 2.1 implies now that T (yx3) ∪ T (x1x2) is a tight subgraph of G inducing
all of y, x1, x2, and x3, hence it must be equal to T ∗. (We note that if T ∗ �= T (yx1)∪
T (x2x3), then T ∗ = T (yx2) ∪ T (x1x3) also follows by a similar proof.)
�

This finally allows us to finish the proof of Theorem 5.1.

Proof (Proof of Theorem 5.1) Asmentioned before, we only need to prove that max ≥
min holds. This is obvious when min = 1. Hence we may assume that at least 2 edges
are needed for the augmentation. In this case, the members of C∗ are pairwise disjoint
by Theorem 5.5 and we need to show that the augmentation can be done by using

123

Cs. Király, A. Mihálykó

⌈ |C∗|
2

⌉
edges. Let us denote a transversal of C∗ by X . For an arbitrary y ∈ X , let the

edge set F0 := {yx : x ∈ X − y}, and let H0 = (V , F0). By Lemma 5.8 G ∪ H0 is
redundant. Let us decrease the number of edges in Hi (that is H0 at the beginning).
While there are at least three edges in Hi that are incident with y, we can decrease the
number of edges in Hi and also the edges incident with y by Lemma 5.9 so that the
arising graph Hi+1 = (V , Fi) still augments G to an (m, �)-redundant graph. We can
repeat this until the degree of y is at most two and the degree of every other vertex is

at most one in the final graph H = (V , F). Thus |F | =
⌈ |X |

2

⌉
=

⌈ |C∗|
2

⌉
and G ∪ H

is (m, �)-redundant.
�
Before we prove Theorem 5.5, we show the connection between the results of this

paper and the paper of García and Tejel [8]. We also use this result in the proof of the
NP-hardness result in Sect. 7. Let us call an (m, �)-tight subgraph G ′ of G generated
if there are u, v ∈ V such that T (uv) = G ′.

Lemma 5.10 Assume that there is no edge uv that augments G to an (m, �)-redundant
graph. Then T (uv) is inclusion-wise maximal amongst all the generated subgraphs
of G if and only if u, v ∈ V are elements of two distinct (m, �)-MCT sets. Moreover,
two inclusion-wise maximal generated subgraphs T (uv1) and T (uv2) are equal if and
only if v1, v2 are in the same (m, �)-MCT set.

Note that this result implies that ‘classes of extreme vertices’ defined in [8] are
exactly the (2, 3)-MCT sets when no edge uv augmentsG to a (2, 3)-redundant graph.

Proof By Theorem 5.5, all the MCT sets of G are pairwise disjoint. Assume that
T (uv) is an inclusion-wise maximal generated subgraph of G for some u, v ∈ V . Let
{x1, . . . , xt } be a transversal of C∗. By Lemma 5.8, G = T (x1x2) ∪ · · · ∪ T (x1xt),
hence we can assume that u ∈ V (x1x2) and v ∈ V (x1x2) ∪ V (x1x3). On the other
hand, T (x1x2) ∪ T (x1x3) = T (x1x2) ∪ T (x2x3) = T (x1x3) ∪ T (x2x3) by Lemmas
2.4 and 5.8. This means that one of the above three generated tight subgraphs, say
T (x1x2), contains both u and v thus V (uv) ⊆ V (x1x2) by Lemma 2.3. Since T (uv)

is inclusion-wise maximal equality must hold.
Let C1,C2 ∈ C∗ such that x1 ∈ C1 and x2 ∈ C2. Suppose that {u, v} ∩ C1 = ∅.

Note that V −C1 is a tight set in G, and hence V (uv) is disjoint from C1, in particular
x1 /∈ V (uv), contradicting V (uv) = V (x1x2). Therefore, with the same argument for
C2, either u ∈ C1 and v ∈ C2, or u ∈ C2 and v ∈ C1.

It is clear that taking any element x of C1 and any element y of C2 the generated
tight set T (xy) is the same by Lemmas 5.7, 5.6 and 2.3. On the other hand, if there
are a, b ∈ V such that T (xy) ⊆ T (ab), then a ∈ C1 and b ∈ C2 or vice-versa
by Observation 5.3. This proves that T (xy) is an inclusion-wise maximal generated
subgraph of G.
�

5.1 Proof of Theorem 5.5

Recall that we assume (A) for our (m, �)-tight graph G and C∗ denotes the family of
all (m, �)-MCT sets of G.

123

Sparse graphs and an augmentation problem

Lemma 5.11 If X and Y are two (m, �)-MCT sets in G, such that X ∩ Y �= ∅, then
m(V − (X ∪ Y)) < �. In particular, |X ∪ Y | ≥ |V | − 1.

Proof For the sake of contradiction, let us suppose that m(V − (X ∪ Y)) ≥ �. V − X
and V − Y are tight sets in G by the co-tightness of X and Y . (V − X) ∩ (V − Y) =
V − (X ∪ Y), hence V − (X ∩ Y) is also tight by Lemma 2.1. Thus X ∩ Y is co-tight,
contradicting the minimality of X and Y . Finally, |X ∪ Y | ≥ |V | − 1 follows by (A0)
and m(V − (X ∪ Y)) < �.
�

Note that Lemma 5.11 implies that all theMCT sets ofG are pairwise disjoint when
� ≤ 0. Hence we only need to prove Theorem 5.5 for the case where � > 0. In this
case, we have two possibilities for intersecting MCT sets: their union may be equal to
V or be of cardinality |V | − 1. As we will see, the latter possibility (which does not
arise if m(v) ≤ � holds for all v ∈ V) is more difficult.

For a vertex v ∈ V , let C∗(v) := {C ∈ C∗ : v /∈ C}. Given a ground set S, a family
of its subsets is called a co-partition of S, if their complements form a partition of S.

Lemma 5.12 Suppose that � > 0. Assume that there exist two (m, �)-MCT sets X ,Y ∈
C∗ such that X ∩ Y �= ∅ and X ∪ Y = V − v for some v ∈ V . Then C∗(v) is a co-
partition of V − v with |C∗(v)| ≥ 3 or there exists a vertex u ∈ V − v such that
T (uv) = G.

Proof Assume that there exists no vertex u ∈ V − v such that T (uv) = G. Then
C∗(v) �= {X ,Y } sinceotherwise the set formedbyavertexu ∈ X∩Y andvwould cover
C∗ contradicting Lemma 5.4 and T (uv) �= G. Hence |C∗(v)| ≥ 3 as X ,Y ∈ C∗(v).
Let Z ∈ C∗(v) − {X ,Y }. As Z must intersect X or Y , X ∪ Z or Y ∪ Z is equal to
V − v = X ∪ Y according to Lemma 5.11. However, then both X ∪ Z and Y ∪ Z are
equal to V −v by the same reasoning. Thus Z ⊇ (X −Y)∪ (Y − X). This implies also
that every two members of C∗(v) are intersecting, and hence for every three members
W1, W2, and W3 of C∗(v), W3 ⊇ (W1 − W2) ∪ (W2 − W1) holds. Therefore, every
vertex in V − v is avoided by at most one member of C∗(v). If there exists a vertex
u that is contained in every member of C∗(v), then {u, v} covers C∗ contradicting
Lemma 5.4 and T (uv) �= G. Therefore, every vertex in V − v is avoided by exactly
one member of C∗(v), that is, C∗(v) is a co-partition of V − v.
�

For a vertex v ∈ V and a set W ⊆ V − v, let ˜Wv := V − v − W . This is the
point where our proof gets more involved than that of [14, Theorem 3.9.13]. This is
because the following lemma is quite complicated in the case of � > 3

2k. Otherwise
we could state it in an even stronger form and the proof would come by a slightly
different version of Lemma 2.1 easily.

Lemma 5.13 Suppose that � > 0. Let v ∈ V be a vertex for which the family C∗(v) is
a co-partition of V − v with |C∗(v)| ≥ 3. Suppose that there exists a vertex u ∈ V − v

with m(u) ≤ m(v). Let W1,W2 ∈ C∗(v) and letw1 ∈ W̃ v
1 andw2 ∈ W̃ v

2 . Suppose that
V ′ is an (m, �)-tight set in G withw1, w2 ∈ V ′. Then either V ′ = V or V ′ = {w1, w2}.
In particular, either V (w1w2) = V (and T (w1w2) = G) or V (w1w2) = {w1, w2}.

123

Cs. Király, A. Mihálykó

Fig. 3 Illustrations of the proof of Lemma 5.13 and Claim 5.14

Proof Assume that V ′
� V is a tight set in G such that w1, w2 ∈ V ′ (for example,

V (w1w2) is such a set if V (w1w2) �= V). Note that {v,w1, w2} covers C∗, hence
V ′ �= V implies that v /∈ V ′ by Lemma 5.4.

Suppose first that |V ′∩ Z̃v| ≥ 2 for some Z ∈ C∗(v). In this case V ′∪(V −Z) = V ′
∪ (Z̃v ∪ v) is a tight set in G by Lemma 2.1. (See Fig. 3.) Hence V ′ ∪ (V − Z) = V
by Lemma 5.4, again. Lemma 2.1 also states that d(v, Z) = 0. This implies that
d(v, W̃ v) = 0 for each W ∈ C∗(v) − {Z}. Note that m(v) < � by Lemma 5.11 (since
any two members of C∗(v) are intersecting and their union avoids v). If m(v) > 0
then Lemma 2.2 on the tight graph G[V − W] implies that d(v, W̃ v) > 0 for each
W ∈ C∗(v) − {Z}, contradicting d(v, Z) = 0 as V − W − v = W̃ v ⊂ Z . However,
if m(v) = 0, then by Lemma 5.2 v is not in any MCT sets. Thus {w1, w2} covers all
MCT sets, meaning that V (w1w2) = V by Lemma 5.4.

We may now suppose that |V ′ ∩ Z̃v| ≤ 1 for every Z ∈ C∗(v). Let us consider the
complement sets of the members of C∗(v). V ′ intersects at least two of them: W̃ v

1 ∪ v

and W̃ v
2 ∪ v. (See again Fig. 3 for an illustration.)

Claim 5.14 V ′ intersects exactly two maximal tight sets containing v, namely, W̃ v
1 ∪ v

and W̃ v
2 ∪ v.

Proof Let us denote the family of maximal tight sets containing v by F = {Z̃v ∪ v

where Z ∈ C∗(v)}. Suppose that V ′ intersects t members of F , say V1, . . . , Vt . Since
|V ′ ∩ Z̃v| ≤ 1 for every Z ∈ C∗(v) and v /∈ V ′, |V ′| = t . Suppose that t ≥ 3. Let E ′
denote the set of edges induced by V ′.

As V ′ is (m, �)-tight, m(V ′) − � = |E ′|. Since every pair of vertices in V ′ induces
an (m, �)-sparse subgraph inG, |E ′| ≤ (t−1)m(V ′)−(t

2

)
�. This resultsm(V ′)−� ≤

(t − 1)m(V ′) − t(t−1)
2 �. Hence t(t−1)−2

2
1

t−2� ≤ m(V ′), and thus t+1
2 � ≤ m(V ′).

Let E∗ denote the union of E ′ and the set of edges induced by V1, . . . , Vt . Clearly,
m(V ′) − � +m(V1) − � + · · · +m(Vt) − � = |E∗|. By the sparsity condition, |E∗| ≤
m(V1∪· · ·∪Vt)−�. Asm(V1∪· · ·∪Vt) = m(V1)+· · ·+m(Vt)−(t−1)m(v), we get
t� ≥ m(V ′)+ (t −1)m(v) ≥ t+1

2 �+ (t −1)m(v). Thusm(v) ≤ � 2t−t−1
2(t−1) = �

2 . By our

condition in the lemma, there exists a vertex u ∈ V −v, for whichm(u) ≤ m(v) ≤ �
2 .

Since m(v) < � (by Lemma 5.11), m(u) = m(v) = � = 0 cannot hold. Hence
m(u) + m(v) > � must hold by (A0), contradicting m(u) ≤ m(v) ≤ �

2 . Therefore,
t = 2.
�

123

Sparse graphs and an augmentation problem

This finishes the proof of the Lemma 5.13.
�
Based on Lemma 5.13, using assumption (A2) one can prove the following.

Lemma 5.15 Suppose that � > 0. Let v ∈ V be a vertex for which the family C∗(v) is a
co-partition of V − v with |C∗(v)| ≥ 3. Then m(v) < m(u) holds for every u ∈ V − v

or there exist two vertices x, y ∈ V − v such that T (xy) = G.

Proof Suppose that there exists a vertex u ∈ V − v with m(u) ≤ m(v).
Suppose first that there is an MCT set Z ∈ C∗(v) for which |Z̃v| ≥ 2. Let z1, z2 ∈

Z̃v and let us take a vertex x ∈ Z such that m(x) is not the unique minimum of m.
(Note that such x must exist as |C∗(v)| ≥ 3 and C∗(v) is a co-partition of V − v so
|Z | ≥ 2.)

By Lemma 5.13, a tight set containing both of x and zi is {x, zi } or V for i = 1, 2.
Hence, for i = 1, 2, {x, zi } is a maximal proper (that is, �= V) tight set in G or
T (xy) = G holds for y = zi . Hence we may assume that {z1, x} and {z2, x} are
maximal proper tight sets in G and their complements are MCT sets. Therefore, there
exist at least two MCT sets avoiding x which are intersecting. Hence C∗(x) is a co-
partition of V − x or there exists a vertex y ∈ V − x such that T (xy) = G by
Lemma 5.12. Note that in the latter case y �= v since there exists an MCT set in
the co-partition C∗(v) of V − v avoiding x and v, hence in this case we are done. In
the first case, note that z1 and z2 are avoided by different members of C∗(x) since
V − {z1, x}, V − {z2, x} ∈ C∗(x). Thus Lemma 5.13 for x assures that any tight set
in G containing z1 and z2 is {z1, z2} or V , however, this contradicts the tightness of
Z̃v ∪ v.

Finally, suppose that, |Z̃v| = 1 for each co-tight set Z ∈ C∗(v). This implies that
V (uv) = {u, v} for every u ∈ V −v. By (A2), there must exist a pair x, y ∈ V −v for
which V (xy) �= {x, y}. Lemma 5.13 implies now that V (xy) = V and T (xy) = G.
�

Note that, when m ≡ k (that is, when G is (k, �)-tight), m(v) < m(u) cannot hold
for any pair of u, v ∈ V , and hence the following statement is an easy corollary of
Lemma 5.15. However, for general m, the proof is less obvious.

Lemma 5.16 Suppose that � > 0. Let v ∈ V be a vertex for which the family C∗(v) is a
co-partition of V −v with |C∗(v)| ≥ 3. Then there exists a pair of vertices x, y ∈ V −v

such that T (xy) = G.

Proof By Lemma 5.15, we only need to prove the case where m(v) < m(u) holds for
every u ∈ V −v. Furthermore, in this case the following claim also follows by Lemma
5.12 and 5.15. (Note that there exists no vertex w ∈ V − v for which T (vw) = G
since C∗(v) is a co-partition.)

Claim 5.17 Assume that there exist two intersecting MCT sets X and Y for which
X ∪Y = V − u for some u ∈ V − v. Then there exists a pair of vertices x, y ∈ V − v

for which T (xy) = G.
�
We may suppose that there exists an MCT set Z containing v since otherwise the

family C∗ is equal to C∗(v) which is a co-partition; hence it could be covered by a set
{x, y} ⊆ V − v implying T (xy) = G by Lemma 5.4. Then, for every X ∈ C∗(v)

123

Cs. Király, A. Mihálykó

intersecting Z , X ∪ Z = V holds by Claim 5.17. Since C∗(v) is a co-partition of V −v

and Z �= V , Z cannot intersect any member of C∗(v). Hence Z must be the singleton
v. Therefore, V − v is tight and dG(v) = m(v).

As V − v is tight, (A3) implies that there exists a vertex u ∈ V − v such that
V (uv) �= {u, v}, that is, {u, v} is not tight. Let W1 be the member of the co-partition
C∗(v) of V − v which does not contain this u. Since {u, v} is not tight and W1 is a
minimal co-tight set inG with u, v /∈ W1, |V−W1| ≥ 3.Note that Lemma5.11 implies
that m(v) < � and Lemma 5.2 implies that m(v) > 0. Hence Lemma 2.2 implies that
dG(v, W̃1

v
) = dG[V−W1](v) ≥ m(v). Let W2 be another member of C∗(v). Now the

tightness ofV−W2 inG andLemma2.2 implies that dG(v, W̃2
v
) = dG[V−W2](v) > 0.

However, since C∗(v) is a co-partition of V − v, W̃1
v
and W̃2

v
are disjoint, hence

m(v) = dG(v) ≥ dG(v, W̃1
v
) + dG(v, W̃2

v
) > m(v), a contradiction.
�

Now we are ready to finish the proof of Theorem 5.5.

Proof of Theorem 5.5. We have already seen that Lemma 5.11 implies the disjointness
of the (m, �)-MCT sets of G when � ≤ 0. Hence it is enough to prove the statement
when � > 0.

Let us suppose that there exists X ,Y ∈ C∗ such that X ∩ Y �= ∅. By Lemma 5.11,
|X ∪ Y | ≥ |V | − 1 holds. According to Lemmas 5.12 and 5.16, either X ∪ Y = V
holds or there exists a pair u, v ∈ V such that T (uv) = G. By the minimality of
MCT sets, every member of C∗ − {X ,Y } must contain at least one element of both of
V − Y = X − Y and V − X = Y − X . Hence each member W ∈ C − {X} intersects
X . Again by Lemmas 5.11, 5.12, and 5.16, X ∪ W = V for every W ∈ C − {X}, that
is, V − X ⊂ W . Let us take u ∈ X and v ∈ V − X . Then {u, v} covers C, and hence
T (uv) = G by Lemma 5.4.
�

Note that it can be checked in polynomial time whether G+uv is (m, �)-redundant
for some pair u, v ∈ V . The naïve algorithm (which can be constructed from the
algorithm of Theorem 2.6) has O(|V |3) running time. In Sect. 6, we give a rather
complex algorithm for this problem based on the above proof that has O(|V |2) running
time.

6 Algorithmic aspects

Our goal in this section is to show that the reduced augmentation problem can be
solved in O(|V |2) time (under the assumption (*)).

By Sect. 5, the MCT sets of G play an important role in the solution of the reduced
problem. To give an algorithm that finds an MCT set, we need to use the following
observation.

Observation 6.1 For a (k, �)-tight graph G, let D be the in-degree constrained orien-
tation in the output of the algorithm of Theorem 2.6. Assume that T is an (m, �)-tight
set in G. And let us define m′ : V (G/T) → Z+ and �′ ∈ Z like in Lemma 2.5.
Then D/T can be an output of that algorithm of Theorem 2.6 when we check the
(m′, �′)-sparsity of G/T , that is, the in-degree of each vertex x in D/T is at most
m′(x).

123

Sparse graphs and an augmentation problem

Proof Since T is (m, �)-tight, T induces m(T) − � edges in G, that is, T induces
m(T) − �′ arcs in D. (More precisely, when � < 0, it induces m(T) arcs and all the �

edges in the set F ′ of G which are not oriented by D, since D[T] may induce at most∑
v∈V �D(v) ≤ m(T) arcs in this case.) Hence the in-degree of T is at most �′ in D

which implies that �D/T (v) ≤ m′(v) holds for each vertex of V (G/T) (and now all
edges of G/T are oriented in D/T).
�
Algorithm 6.2 Input: A graph G = (V , E) along with m : V → Z+ and � ∈ Z such
that (A) and (*) hold, and two vertices u, v ∈ V .
Output: An (m, �)-MCT set in G that does not contain u, v or the edge uv when
T (uv) = G.

0. Run the algorithm of Theorem 2.6(a) on G, let D be the output orientation.
1. Calculate T := VG

(m,�)(uv) by using D and Theorem 2.6(b).
2. If T = V then Output: the edge uv, STOP.
3. Contract T to t ′ according to Lemma 2.5, that is, G ′ := G/T , D′ := D/T ,

�′ := max(�, 0), m′(u) := m(u) for each u ∈ V (G ′) ∩ V , m′(t ′) := �′.
4. v := t ′ (hence m′(v) = �′), V ∗ := V (G ′) − v.
5. While V ∗ �= ∅, do:
6. Calculate T ′ := VG ′

(m′,�′)(uv) by using D′ and Theorem 2.6(b).
7. If V ′ = V (G ′), then V ∗ := V ∗ − u.
8. Else, Contract T ′ to t ′, so G ′ := G ′/T ′, D′ := D′/T ′.
9. v := t ′, V ∗ := V ∗ ∩ V (G ′) − v.

10. Output: V (G ′) − v.

Lemma 6.3 The output of Algorithm 6.2 is either the edge uv when T (uv) = G or
an (m, �)-MCT set of G not containing u and v. The running time of Algorithm 6.2 is
O(|V |2).
Proof If the output is the edge uv, then the algorithm returns this in Step 2 because
TG

(m,�)(uv) = G. Otherwise, the output of Algorithm 6.2 is a vertex set. Applying
Lemma 2.5 repeatedly, we conclude that the original vertex set U ⊂ V which is
contracted during the algorithm (that is, for which G ′ = G/U), is an (m, �)-tight set
in G. Thus the output of Algorithm 6.2 is an (m, �)-co-tight set.

Suppose that U is not an inclusion-wise maximal proper (m, �)-tight set in G, that
is, there exists a proper (m, �)-tight set T ∗

� U in G. Take the image of T ∗ in the
final G ′, denote it with T ∗

G ′ . By Lemma 2.5, T ∗
G ′ is tight in G ′, and clearly v ∈ T ∗

G ′ .
Let u ∈ T ∗

G ′ − v. Since V ∗ = ∅, u ∈ V (G ′) − V ∗ − v also holds. It now follows that

TG ′
(m′,�′)(uv) = G ′, which is a contradiction, because T ∗

G ′ ⊇ V (T G ′
(m′,�′)(uv)) holds by

Lemma 2.3.
Step 0 runs in O(|V |2) time by Theorem 2.6(a). After this, Step 1 needs O(|V |)

running time and every execution of the loop takes at most O(|V |) time by Theorem
2.6(b) and Observation 6.1. Thus the total running time of the algorithm is O(|V |2).

�

We need to decide now whether there is any pair of vertices u, v ∈ V for which
G+uv is (m, �)-redundant. The motivation for this lays in Theorem 5.5, as we saw in

123

Cs. Király, A. Mihálykó

Sect. 5 how the structure of the MCT sets are completely different if there exists such
an edge, or not. We noted in the end of Sect. 5.1 how this can be decided in O(|V |3)
time. Now we answer this question in O(|V |2) time. We start with the case when we
have an MCT set consisting of a single vertex.

Lemma 6.4 Assume (A) and (*). If C = {v} is an (m, �)-MCT singleton set, then we
can check whether there exists an edge xy such that T (xy) = G and return it in
O(|V |2) time.
Proof By Observation 5.3, if there exists a pair x, y ∈ V such that T (xy) = G, then
x or y must be v. Hence we need to check for each x ∈ V − v whether T (xv) = G.
This can be done in O(|V |2) total time by Theorem 2.6.
�

Now we give the algorithm that decides whether G can be augmented to an (m, �)-
redundant graph by using one edge.

Algorithm 6.5 Input: A graph G = (V , E) along with m : V → Z+ and � ∈ Z such
that (A) and (*) hold.
Output: If there exists an edge e such that T (e) = G, then e, otherwise a vertex v of
an (m, �)-MCT set.

1. Choose two vertices u, v ∈ V with m(v) ≥ m(u), such that {u, v} induces less
than m(u) + m(v) − � edges. Also suppose that m(v) ≥ m(u).

2. Run Algorithm 6.2 with u and v. Result: edge e or MCT set Cuv .
If the result is an edge e, then Output e, STOP.

3. If |Cuv| = 1, then run the algorithm of Lemma 6.4 with Cuv .
If this outputs an edge e, then Output e, STOP.
Else, Output the single element c1 of Cuv , STOP.

4. Let c1 ∈ Cuv be such that m(c1) is not the unique minimum of m.
5. Run Algorithm 6.2 with v, and c1. Result: edge e or MCT set Cvc1 .

If the result is an edge e, then Output e, STOP.
7. If |Cvc1 | = 1, then run the algorithm of Lemma 6.4 with Cvc1 .

If this outputs an edge e, then Output e, STOP. Else, Output the single
element c2 of Cvc1 , STOP.

8. Let c2 ∈ Cvc1 − Cuv .
9. Run Algorithm 6.2 with c1 and c2. Result: edge e or MCT set Cc1c2 .

If the result is an edge e, then Output e, STOP.
10. If Cuv ∩ Cvc1 = ∅, Cvc1 ∩ Cc1c2 = ∅, and Cc1c2 ∩ Cuv = ∅, then Output: c1.
11. Else, check each possible edge from v and c1, it gives a suitable edge e. Output e.

Lemma 6.6 Algorithm 6.5 decides whether there exists one edge e such that T (e) = G
and returns it. If there is no such edge, then it returns an element of an (m, �)-MCT
set. The algorithm runs in O(|V |2) time.
For the proof of this lemma we shall use some notation from Sect. 5.

Proof Observe that, whenever the algorithm returns a vertex, the output is a vertex
c1 ∈ Cuv or c2 ∈ Cvc1 where Cuv and Cvc1 are MCT sets by Lemma 6.3.

123

Sparse graphs and an augmentation problem

Also by Lemma 6.3, if Algorithm 6.5 returns an edge e after any execution of
Algorithm 6.2, then T (e) = G holds thus we can stop. By Lemma 6.4, if it outputs an
edge e in Step 3 or 7, then T (e) = G holds thus we can stop. If the Algorithm returns
c1 after Step 10, then it is easy to see that G cannot be augmented to a redundant
graph with only one edge by Observation 5.3. Also if its output is given in Step 3 or
7, then this is correct due to Lemma 6.4 and Observation 5.3. Thus we only need to
prove that if Algorithm 6.5 reaches Step 11, then one edge from v or c1 augments G
to an (m, �)-redundant graph.

Assume that we reached Step 11. Then neither m(v) nor m(c1) is the unique
minimum of m and |Cuv|, |Cvc1 | ≥ 2. Also notice that in this case � > 0 according to
Lemma 5.11.

Suppose first that Cc1c2 and Cvc1 are intersecting. Cc1c2 ,Cvc1 ∈ C∗(c1) holds by
their construction. By Lemma 5.12, there exists a vertex w ∈ V − c1 such that
T (wc1) = G, or C∗(c1) forms a co-partition. Note that V −Cuv is a tight set containing
u, v and c2 (which is in Cvc1 −Cuv). Moreover, |V −Cuv| > 2 must hold since {u, v}
is not tight inG as i({u, v}) < m(u)+m(v)−�. Hence, if C∗(c1) forms a co-partition,
then the tightness of V − Cuv contradicts Lemma 5.13. Therefore, in this case there
exists a vertex w ∈ V − c1 such that T (wc1) = G.

Suppose now that Cc1c2 ∩ Cvc1 = ∅. If Cuv and Cvc1 are intersecting, then
Cuv,Cvc1 ∈ C∗(v). NowLemma 5.12 implies that there exists a vertexw ∈ V −v such
that T (wv) = G, or C∗(v) forms a co-partition. However, if C∗(v) forms a co-partition,
then, by Lemma 5.13, either T (c1c2) = G or V − Cc1c2 = {c1, c2}, contradicting the
assumptions that |Cvc1 | �= 1 and Cc1c2 ∩Cvc1 = ∅. Therefore, in this case there exists
a vertex w ∈ V − v such that T (wv) = G.

If neitherCc1c2 andCvc1 norCuv andCvc1 are intersecting, thenCc1c2 intersectsCuv ,
and henceCc1c2 contains every vertex inCvc1−c2 byLemma5.11 sinceCuv∩Cvc1 = ∅
and c2 /∈ Cc1c2 . Thus Cc1c2 intersects Cvc1 by |Cvc1 | > 1, a contradiction. This proves
the correctness of Algorithm 6.5.

We can find appropriate vertices u and v for Step 1 by checking each 2-element
vertex set in O(|V |2) total time. As Algorithm 6.2 and checking the size of the gener-
ated tight set for each possible new edge from a vertex runs in O(|V |2) time by Lemma
6.3 and Theorem 2.6 like in the proof of Lemma 6.4, and we need to run the O(|V |2)
time algorithm of Lemma 6.4 at most twice, the total running time of Algorithm 6.5
is O(|V |2).
�

Now, we focus our attention to the case where there is no edge e that augments G
to a redundant graph. From this point on, the idea of our algorithm is a generalization
of that of García and Tejel [8] because of Lemma 5.10. Hence from this point on, our
description will be more sketchy. By Lemma 5.10, it is easy to see that the following
greedy algorithm finds a transversal of the MCT sets of G starting from a vertex v

which is taken from an MCT set. The running time of this algorithm is again O(|V |2)
by Theorem 2.6.

Algorithm 6.7 Input: A graph G = (V , E) along with m : V → Z+ and � ∈ Z such
that (A) and (*) hold and there exists no edge e that augments G to an (m, �)-redundant
graph, and a vertex v ∈ V from an (m, �)-MCT set of G.
Output: A transversal of the MCT sets of G.

123

Cs. Király, A. Mihálykó

0. Run the algorithm of Theorem 2.6(a) on G.
1. Initialize X = ∅. All vertices are unmarked. Mark v.
2. Explore all vertices j ∈ V :

If j is unmarked, then calculate T (v j) (by using the output of Step 0 and Theorem
2.6(b)) and Mark all unmarked vertices in V (v j). Let X := (X − V (v j)) + j .

3. Output: X + v.

Finally, by using the reduction steps provided by Lemma 5.9 and the above algo-
rithms, we can easily find an optimal solution of the reduced problem. Observe that,
by Theorem 2.6(b), every reduction step can be executed in O(|V |) time thus the total
running time of the reduction is again O(|V |2).

Note that it follows by Sect. 4 that assumption (A) can be omitted in our algorithms.
This implies the following.

Theorem 6.8 Assume (*). Let G = (V , E) be an (m, �)-tight graph. Then there exists
an algorithm that gives an optimal solution for the reduced augmentation problem in
O(|V |2) time.
�

Theorem 3.3 implies now the following.

Theorem 6.9 Assume (*). Let Ḡ be an (m, �)-rigid graph for which m ≥ �. Then there
exists an O(|V |2) time algorithm to obtain a set of edges F of minimum cardinality,
such that Ḡ + F is (m, �)-redundant.
�

7 Complexity results

In this sectionwe prove that the general augmentation problem isNP-hardwhen � > k.
Moreover, ourmethod also implies that there exists no polynomial time constant factor
approximation algorithm for this problem if P�=NP.García and Tejel showed in [8] that
the general augmentation problem isNP-hardwhen k = 2 and � = 3. Our construction
is based on their idea.

First we show the NP-hardness of the following problem, called theColored Tight
Augmentation problem or CTA problem.

Problem Let G = (V , E) be a (k, �)-tight graph such that the edges in E are colored
to red or black. Find a graph H on the same vertex set with the minimum number of
edges, such that each black edge of G is (k, �)-redundant in G ∪ H.

The CTA problem is an extension of the general problem: given an instance Ḡ =
(V , Ē) of the general problem, one can get an instance of the CTA problem by taking
a spanning (k, �)-tight subgraph of Ḡ and coloring each already redundant edge to
red and each not redundant edge to black. Now, for a graph H = (V , F), Ḡ ∪ H is
(k, �)-redundant if and only if all the black edges of G are (k, �)-redundant in G ∪ H
by Lemma 2.4.

By extending the work of García and Tejel [8], we shall prove that the CTA problem
is NP-hard for every (k, �) where k > 1, that is, also for � ≤ k in which case the
general augmentation problem is solvable in polynomial time by Theorem 6.9. On the

123

Sparse graphs and an augmentation problem

other hand, for the (k, �) = (2, 3) case the CTA problem is equivalent to the general
augmentation problem: adding parallel edges to the red ones reduces the solution
of the CTA problem to the solution of the general problem. (We note that the same
construction works whenever � = 2k − 1. Also our general construction results in the
very same graph for � = 2k − 1.)

Our NP-hardness proofs for both the CTA problem and the general problem are
based on the following statement which extends the well-known fact that an addition
of a vertex of degree k maintains the (k, �)-tightness (or the (k, �)-rigidity of a graph).

Lemma 7.1 Let G = (V , E) be a (k, �)-tight graph, let G ′ = (V ′ ∪ S, E ′) be a
connected (k, �)-sparse graph where V ∩V ′ = ∅ and S ⊆ V . Let G∗ = (V ∪V ′, E ∪
E ′). Suppose that eG ′(X) > k|X | holds for each X � V ′, and eG ′(V ′) = |E ′| = k|V ′|.
Then

(a) G∗ is (k, �)-tight and V ′ is a (k, �)-MCT set in G∗.
(b) Assume that there are at least two disjoint (k, �)-MCT sets C1 and C2 in G

which do not intersect S. Then the (k, �)-MCT sets of G∗ are exactly V ′ and those
(k, �)-MCT sets of G that do not intersect S.

(c) Moreover, with the assumption of (b), if X ,Y are (k, �)-MCT sets of G with
X ∩ S �= ∅ while Y ∩ S = ∅, then for each v′ ∈ V ′, x ∈ X and y ∈ Y , T G(xy) ⊂
TG∗

(v′y) holds.

Lemma 7.1 is illustrated by Fig. 1 where the graph G, formed by the solid edges,
arises by G − X this way. Observe that the MCT sets in G − X are the singletons {u},
{v} and {z} and the MCT sets in G are {u}, {v} and X , that is, z is removed from the
family of (3, 4)-MCT sets as claimed by Lemma 7.1(b). TG(ux) is the graph formed
by the bold edges, thus z ∈ VG(ux). This implies that TG−X (uz) ⊂ T G(ux) holds
by Lemma 2.3, as claimed by Lemma 7.1(c).

Proof (a) It follows by definition that G∗ induces k|V ∪V ′|−� edges. Hence we need
to prove the (k, �)-sparsity ofG∗. Let X ⊆ V ′∪V . Now, iG∗(X) = iG(X∩V)+|E ′|−
eG ′(V ′−X) ≤ k|X∩V |−�+k|V ′|−k|V ′−X | = k|X∩V |−�+k|X∩V ′| = k|X |−�

by the (k, �)-sparsity ofG and our assumption on eG ′ . It follows also by our assumption
on eG ′ that V ′ is MCT in G∗.

(b) V ′ is MCT in G∗ by part (a). Observe that eG∗(Z) = eG(Z) holds for each
Z ⊆ V − S. This implies that, beside V ′, everyMCT set of G which does not intersect
V ′ is also an MCT set in G∗. Now the disjointness of the sets C1, C2 and V ′ implies
that the MCT sets in G∗ are pairwise disjoint by Theorem 5.5. However, then, by
Lemma 5.6, there is no MCT set Z �= V ′ in G∗ which intersects S ∪ V ′.

(c) By Lemmas 5.7 and 5.6, V ′ ∪ NG∗(V ′) = V ′ ∪ S ⊂ VG∗
(v′y). Hence

TG∗
(x ′y) ⊂ TG∗

(v′y) holds for each x ′ ∈ X ∩ S by Lemma 2.3. On the other
hand, T G∗

(x ′y) = T G(x ′y) since x ′, y ∈ V and V ′ is co-tight in G∗. Furthermore,
T G(x ′y) = T G(xy) follows by Lemma 5.10, completing our proof.
�

We shall use the set cover problem to show the NP-hardness of the CTA problem.
Given a ground set X and a family S = {S1, . . . , Sm} of subsets of X , an optimal
solution of the set cover problem is a subfamilyS ′ ⊆ S of setswithminimal cardinality
such that their union is X .

123

Cs. Király, A. Mihálykó

Fig. 4 Construction of G∗ for (k, �) = (3, 5). On the right side, we do not show the red (thin) edges of G1

Theorem 7.2 Let k > 1 and � < 2k be two integers. The CTA problem is NP-hard on
(k, �)-tight graphs, moreover, there exists no polynomial time constant factor approx-
imation algorithm for it if P�=NP.

Proof Given an instance of the set cover problem, a family S on ground set X such that
|X | ≥ 2k+1 and no twomembers ofS cover X , let us construct a graph. (We note here
that these assumptions do not change the complexity of the set cover problem.) First
take a (k, �)-tight graph G0 on a copy X ′ of X such that there are at least two disjoint
MCT sets in G0. (It is easy to check that such a graph exists when |X | ≥ 2k + 1.) Let
us take another copy X ′′ of X and connect the copies x ′ and x ′′ of each x ∈ X by an
edge ex . These |X | edges will be the only black edges in our final graph; every other
edge will be red. Add new edges (not parallel to the previous ones) between X ′ and
X ′′ until d(x ′′) = k holds for every x ′′ ∈ X ′′. Let us denote the graph we got with
these steps by G1. Now, Lemma 7.1 and Lemma 5.7 imply the following.

Claim 7.3 G1 is (k, �)-tight and the family of MCT sets in G1 equals to the family
formed by all one element subsets of X ′′. Furthermore, T G1(x ′′y′′) induces exactly
two black edges ex and ey for each pair x, y ∈ X.
�

Now for every S ∈ S we make the following extension on G1. Let S′′ denote the
copy of S in X ′′. Start with VS = ∅. First choose one vertex from S′′ and k−1 vertices
from X ′ and add a new vertex v with (red) edges to these k vertices. Add v to VS . Later,
when VS is not empty, take the last vertex that is added to VS , say v, one new vertex
from S′′, and k −2 vertices from X ′ and add a new vertex w of degree k connecting to
these k vertices. Add also w to VS . Repeat the above addition until there are no more
vertices in S′′ that were not used in such a step. (See Fig. 4)

Let us denote the graph that we get from G1 after running the above procedure for
each S ∈ S by G∗ = (V ∗, E∗). For an arbitrary S ∈ S, d(v) = k holds for every
v ∈ VS in the moment when it is added to VS , however, in the subsequent step this is
increased to k + 1, except for the last vertex added to VS that we call mS . By Lemma
7.1(b), this shows that the only MCT sets in G∗ are the singletons MS := {mS} for all
S ∈ S. By the construction, it is also easy to see that VS is co-tight in G∗ for every
S ∈ S. By Lemma 5.10, we may assume that the optimal solution of the CTA problem
consists of edges between MCT sets, that is between the vertices mS (S ∈ S).

123

Sparse graphs and an augmentation problem

Claim 7.4 Let S1, S2 ∈ S and let e = mS1mS2 be an edge connecting the two (k, �)-
MCT sets MS1 and MS2 of G∗. Then a black edge ex is contained in T G∗

(e) if and
only if x ∈ Si ∪ S j .

Proof Since VS is co-tight for each S ∈ S, T G∗
(e) ⊆ G∗[X ′ ∪ X ′′ ∪VSi ∪VSj] =: Gi j

by Lemma 2.3, and hence T G∗
(e) = T Gi j (e). Now, by using Lemma 7.1(c) several

times following the construction of VSi and VSj , we get that T
G0(x ′′y′′) ⊂ T Gi j (e)

for each pair x, y ∈ Si ∪ S j . Hence T G∗
(e) = T Gi j (e) induces the black edge ex for

each x ∈ Si ∪ S j by Claim 7.3. On the other hand, z′′ /∈ VGi j (e) for z ∈ X − (Si ∪ S j)

since {z′′} is co-tight in Gi j by Lemma 7.1(b). Hence the black edge ez is not induced
by T G∗

(e) = T Gi j (e).
�
Remember, that we only need to add edges so that all the black edges become redun-
dant. Thus from Claim 7.4 one can see that any (not necessarily optimal) solution of
the CTA problem on G∗ of cardinality q gives a (not necessarily optimal) solution of
the set cover problem that uses at most 2q sets and every (not necessarily optimal)
solution of the set cover problem with cardinality q gives a (not necessarily optimal)
solution of the CTA problem with cardinality � q

2 �. However, there is no constant fac-
tor approximation of the set cover problem unless P=NP by [21]. Therefore, there is
no constant factor approximation of the CTA problem unless P=NP. This finishes the
proof of Theorem 7.2.
�

To show the NP hardness of the general problem for k < �, we shall modify the
above NP-hardness proof in such a way that we add now 2k − � parallel copies of
each edge during the construction. To this end, we shall attach MCT sets – other than
the singletons used in the above proof – by using Lemma 7.1.

Theorem 7.5 Let k and � be two positive integers such that k < � < 2k. Then the
general augmentation problem is NP-hard on (k, �)-rigid graphs, moreover, there
exists no polynomial time constant factor approximation algorithm for it if P�=NP.

Proof Let a denote the greatest common divisor of 2k− � and �− k, and let b = 2k−�
a

and c = �−k
a . Let us define a tree H(k,�) = (V(k,�)∪S, E(k,�))onb+c+1vertices, called

a (k, �)-caterpillar, as follows. Let V(k,�) = {v1, . . . , vb}, and E(k,�) = P(k,�) ∪ L(k,�)

where P(k,�) = {vivi+1 : i = 1, . . . , b − 1} is path on V(k,�) and the edges of L(k,�)

are edges between V(k,�) and S in such a way that dH(k,�) (s) = 1 for each s ∈ S,

dH(k,�) (v1) = � �−k
2k−�

� + 1, and dH(k,�) (vi) = � �−k
2k−�

i� − � �−k
2k−�

(i − 1)� + 2 for each
i ∈ {2, . . . , b}. For a set E and c ∈ Z+ let cE denote the multiset that arises by
taking c copies of each element of E . For a graph G = (V , E), cG denotes the
graph (V , cE). It is easy to check that H ′

(k,�) = (2k − �)H(k,�) is (k, �)-sparse and
has k|V(k,�)| edges. Moreover, is follows by a short calculation that eH ′

(k,�)
(X) > k|X |

for each X � V(k,�). (It is enough to check this for subpaths of P(k,�) for which the
calculation is simple.) Therefore, H ′

(k,�) fulfills the conditions of Lemma 7.1. (Observe
that in Fig. 1 the (3,4)-tight graph G is obtained from G − X by gluing 2H(3,4) to
G − X .)

We can now use H ′
(k,�) in the proof of Theorem 7.2 instead of vertices of degree k

since |S| = c+ 1 ≥ 2. The only difference is that we do not naturally have the second

123

Cs. Király, A. Mihálykó

copy X ′′ in the construction of G1. Instead we perform |X | extensions on G0 with the
H ′

(k,�) in such a way that, in the step where we add V
x
(k,�) for x ∈ X , we connect V x

(k,�)
only to X ′ and one of the edges, say, ex connecting V x

(k,�) and X ′ connects an element

x ′′ ∈ V i
(k,�) to the copy x ′ of x . The second copy X ′′ of X (in which we take the copy

S′′ of each set S ∈ S in the final phase of the construction) is the set of these vertices
x ′′. The (2k − �) parallel copies of the edges ex for all x ∈ X will be the only black
edges in our final graph; every other edge will be red.

This way, for each input S on ground set X of the set cover problem, we obtain
an instance G∗

(k,�) of the CTA problem on which a solution of any (not necessarily
optimal) solution of the CTA problem of cardinality q gives a (not necessarily optimal)
solution of the set cover problem that uses at most 2q sets and every (not necessarily
optimal) solution of the set cover problem with cardinality q gives a (not necessarily
optimal) solution of the CTA problem on G∗

(k,�) with cardinality � q
2 �. Observe that

each edge of G∗
(k,�) is present 2k − � times except the edges of G0.

Now, given the instance G∗
(k,�), defined above, we construct an instance Ḡ∗

(k,�) of
the general problem by adding a new parallel copy to each red edge of G∗

(k,�). It may
mean more parallel new edges added between two vertices. It is clear that all red edges
of G∗

(k,�) are (k, �)-redundant in Ḡ. On the other hand, for an edge e of G0, T
G∗

(k,�) (e)
is a subgraph of the (k, �)-tight subgraph G0 of G∗

(k,�) by Lemma 2.3; and, for an edge

e = uv that we added later in the construction of G∗
(k,�), T

G∗
(k,�) (e) = G∗[{u, v}] since

the set {u, v} induces 2k − � parallel edges in G∗
(k,�), and hence it is (k, �)-tight in

G∗
(k,�). Therefore, no black edge of G∗

(k,�) is (k, �)-redundant in Ḡ(k,�), and hence a

(not necessarily optimal) solution of the general problem on Ḡ∗
(k,�) is a (not necessarily

optimal) solution of the CTA problem on G∗ and vice versa. This finishes the proof
of Theorem 7.5.
�

8 Concluding remarks

8.1 Hypergraphs

We can generalize the results if the input is a hypergraph instead of a graph. Most
definitions (like (m, �)-tight/rigid/redundant) are straightforward to generalize. The
problem we seek to solve is the following. Given an (m, �)-rigid hypergraph H =
(V , E), find an edge set F (and not hyperedge set) of minimum cardinality, such that
(V , E∪F) is an (m, �)-redundant hypergraph. The generalization of the ideas and even
the proofs is straightforward, however, some notation needs to be changed. Given a
hypergraphH = (V , E), dH(v) denotes the number of hyperedges that contain v ∈ V
and, for X ,Y ⊆ V , dH(X,Y) denotes the number of hyperedges that are induced by
X ∪ Y but not induced by neither X nor Y . The neighbor set of X ⊂ V in this case is
NH(X) = {v ∈ V − X : there is x ∈ X and e ∈ E such that {v, x} ⊆ e}.

We shall note here that, for hypergraphs, there also exists a polynomial algorithm
that satisfies all requirements of Theorem 2.6 except for the running time, see the paper
by Streinu and Theran [25]. Its running time is O(h|V |2) where h is an upper bound

123

Sparse graphs and an augmentation problem

on the size of the hyperedges. Thus the running time of all the algorithms gets a bit
worse in this case, which particularly affects every result in Sect. 6. However, other
than these changes the literatim copy of all the claims and the proofs of this paper
remain correct for hypergraphs.

8.2 Simple graphs

In several applications in rigidity theory (see [11,23]), it must be assumed that all
considered graphs are simple, that is, have no loops nor parallel edges. Hence only
those redundant augmentations are appropriate that maintain this property, that is,
the input as well as the output graph is simple. (Notice that an optimal augmenting
edge set never contains two parallel edges by Lemma 2.4.) We consider here a slight
generalization of this problem that we call the E ′-free general problem: Given an
(m, �)-rigid graph G = (V , E) and E ′ ⊆ E , find a graph H = (V , F) on the same
vertex set with minimum number of edges, such that G ∪ H is (m, �)-redundant and
the edges in F are not parallel to the edges in E ′. We call the version where the input
is (m, �)-tight the E ′-free reduced problem. By using the same reduction as in Sect.
3, we can reduce the solution of the E ′-free general problem to the solution of the
E ′-free reduced problem in O(n2) time when m ≥ �. Hence we only need to solve
the E ′-free reduced problem.

Run the algorithm of Theorem 6.8. First assume that the output is a single edge uv,
that is, T (uv) = G for a pair u, v ∈ V . If uv /∈ E ′, then uv is an optimal solution of the
E ′-free reduced problem. Hence wemay assume that uv ∈ E ′ ⊆ E . Let E∗ denote the
edges not in E ′, that we may use. If G + E∗ is not (m, �)-redundant, then the E ′-free
reduced problem is not solvable. Thus suppose that G + E∗ is (m, �)-redundant, that
is, T (uv) = G = R(E∗) = ⋃

e∈E∗ T (e). Then, as uv ∈ E , uv ∈ T (e) for an edge
e ∈ E∗. Hence G = T (uv) ⊆ T (e) = G by Lemma 2.3. Therefore, in this case we
may calculate T (e) for each edge e ∈ E∗ that takes O(|V |3) time by Theorem 2.6.

Next assume that the output consists of a set F of at least two edges and (A) holds
for G. Then no edge in F is parallel to any edge e ∈ E by Lemma 5.6 since the
algorithm outputs edges connecting members of C∗ in this case.

Finally assume that the output consists of a set F of at least two edges and (A)
does not hold for G. If (A2) or (A3) does nor hold for G, then G has less than c2 + 2
vertices by Sect. 4, and hence the solution of the E ′-free problem is straightforward by
checking all possibilities. When G violates (A1), we may delete its isolated vertices
withm(v) = 0 like in Sect. 4. If (A) holds for the resulting graph then the output of our
algorithm does not use any edge parallel to any edge e ∈ E by Lemma 5.6 and we are
done. Otherwise, the resulting graph again has less than c2 +2 vertices. Here we need
to be careful since it is possible that the E ′-free augmentation is not solvable for the
arising graph while it is solvable for G (for example by using some edges uv from a
deleted vertex withm(u) = 0). However, observe that the sets of edges in T (u1v) and
T (u2v) are the same for u1, u2, v ∈ V with m(u1) = m(u2) = d(u1) = d(u2) = 0,
moreover, the edge set of T (u1u2) is a subset of both. Hence, in this case, we may add
back a single vertex u with m(u) = d(u) = 0 and solve the E ′-free reduced problem
on the arising graph on less than c2 + 3 vertices by checking all possibilities.

123

Cs. Király, A. Mihálykó

8.3 Addingmultiple edges

In some other applications, instead of adding non parallel edges, in contrast, we
need to add several parallel copies of each edge in the augmentation, that is, we
want to minimize |F | such that G + cF is (m, �)-redundant. (For example, such a
problem arises for m ≡ k = � when one wants to augment a ‘rigid generic body-
hinge framework’ to ‘globally rigid’ by adding some hinges (see [15]).) Note that,
if G is an (m, �)-tight graph and F is a set of edges on the same vertex set, then
R(cF) = ⋃

f ∈cF T (f) = ⋃
f ∈F T (f) = R(F) by Lemma 2.4. Hence, for any

(m, �)-rigid graph G, G + cF is (m, �)-redundant if and only if G + F is (m, �)-
redundant. Therefore, the above version of the augmentation problem is equivalent to
the original one.

8.4 Further directions

We considered our augmentation problem only for (k, �)-rigid inputs, that is, when the
input graph has a spanning (k, �)-tight subgraph. It would be natural to consider the
problem for general input graphs. This problem was solved for the case where k = �

by [4,7], however, we leave it open for other values of k and �. A specific instance of
this open problem is the case where the input is (k, �)-sparse or even more specifically
contains no edges. Since there always exists a (k, �)-circuit on a sufficiently large
vertex set and such a graph is (k, �)-redundant and has k|V | − � + 1 edges, this
augmentation problem for edgeless graphs can be solved easily. However, if the edges
are weighted, then even with a metric weight function the question becomes rather
interesting. For example, the case of k = � = 1 is the well-known Minimum Cost 2-
Edge Connected Spanning Subgraph problem. Recently, Jordán and the second author
of this paper [16] considered the (k, �) = (2, 3) case of this problem and gave a 2-
approximation algorithm to the metric weight case. By generalizing their method and
using the results of this paper, it seems to be possible to obtain similar approximation
algorithms for other values of k and �.

Another problem, which is also closely related to our augmentation problem, is a
version of the pinning problem from rigidity theory. In the pinning problem, our goal
is to anchor a minimum set of joints in a bar-joint framework such that the resulting
framework is rigid/globally rigid/redundantly rigid. In the generic case, pinning can
be modeled by adding a complete graph on the anchored vertices to our graph (see
[14]). Fekete and Jordán [5] investigated the (2-dimensional) global rigidity version of
this problem and gave a 3-approximation algorithm. Jordán [14] obtained the optimal
(2, 3)-redundant pinning of a (2, 3)-tight graph by using [14, Theorem 3.9.13] (that
is, the special case of Theorem 5.5 for (2,3)-tight graphs). The main idea behind
Jordán’s work is similar to Observation 5.3: it can be seen easily that each co-tight
set must contain a pinned vertex. By using this idea, our results can be applied for the
generalizations of this problem (with (k, �)-tight or (k, �)-rigid inputs) and one can
obtain the similar positive and negative results to the ones what we obtained for our
augmentation problem.

123

Sparse graphs and an augmentation problem

Acknowledgements Projects Nos. NKFI-128673 and K-135421 have been implemented with the support
provided from the National Research, Development and Innovation Fund of Hungary, financed under the
Hungarian Scientific Research Fund FK_18 and K_20 funding schemes. The first author was supported
by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-19-4
and ÚNKP-20-5. New National Excellence Program of the Ministry for Innovation and Technology. The
second author was supported by the ÚNKP-18-3 New National Excellence Program of the Ministry of
Human Capacities, Hungary. The authors are grateful to Tibor Jordán for the inspiring discussions and his
comments.

Funding Open access funding provided by Eötvös Loránd University.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D.O.,
Belhumeur, P.N.: A theory of network localization. IEEE Trans. Mob. Comput. 5(12), 1663–1678
(2006)

2. Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In G. Di Battisa and U. Zwick
(eds.), Algorithms: ESA, vol. 2832, pp. 78–89, Springer (2003)

3. Connelly, R., Jordán, T., Whiteley, W.: Generic global rigidity of body-bar frameworks. J. Comb.
Theory Ser. B 103(6), 689–705 (2013)

4. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976)
5. Fekete, Zs., Jordán, T.: Uniquely localizable networks with few anchors. In: Nikoletseas, S.E., Rolim,

J.D.P. (eds.) Algorithmic Aspects of Wireless Sensor Networks, pp. 176–183. Springer, Berlin (2006)
6. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press, Oxford (2011)
7. Frank, A., Király, T.: Combined connectivity augmentation and orientation problems. Discrete Appl.

Math. 131(2), 401–419 (2003)
8. García, A., Tejel, J.: Augmenting the rigidity of a graph in R

2. Algorithmica 59(2), 145–168 (2011)
9. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

10. Jackson, B., Jordán, T.: Brick partitions of graphs. Discrete Math. 310(2), 270–275 (2010)
11. Jackson, B., Nixon, A.: Global rigidity of generic frameworks on the cylinder. J. Comb. Theory Ser. B

139, 193–229 (2019)
12. Jacobs, D.J., Hendrickson, B.: An algorithm for two dimensional rigidity percolation: the pebble game.

J. Comput. Phys. 137, 346–365 (1997)
13. Jacobs, D.J., Thorpe, M.F.: Generic rigidity percolation: the pebble game. Phys. Rev. Lett. 75, 4051–

4054 (1995)
14. Jordán, T.: Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks. In: Discrete

Geometric Analysis. volume 34 of MSJ Memoirs, pp. 33–112. Mathematical Society of Japan, Japan
(2016)

15. Jordán, T., Király, Cs, Tanigawa, S.: Generic global rigidity of body-hinge frameworks. J. Comb.
Theory Ser. B 117, 59–76 (2016)

16. Jordán, T., Mihálykó, A.: Minimum cost globally rigid subgraphs. In: Bárány, I., Katona, G.O.H., Sali,
A. (eds.) Building Bridges II: Bolyai Society Mathematical Studies, vol. 28, pp. 257–278. Springer,
Berlin, Heidelberg (2019)

17. Király, Cs.: An efficient algorithm for testing (k, �)-sparsity when �<0. Technical report (Quick Proof)
QP-2019-04, Egerváry Research Group, Budapest, (2019). www.cs.elte.hu/egres

18. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4, 331–340 (1970)

123

http://creativecommons.org/licenses/by/4.0/
www.cs.elte.hu/egres

Cs. Király, A. Mihálykó

19. Lee, A., Streinu, I.: Pebble game algorithms and sparse graphs. Discrete Math. 308(8), 1425–1437
(2008)

20. Lorea, M.: On matroidal families. Discrete Math. 28(1), 103–106 (1979)
21. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41(5),

960–981 (1994)
22. Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. J. London Math. Soc. 39, 12

(1961)
23. Nixon, A., Owen, J.C., Power, S.C.: Rigidity of frameworks supported on surfaces. SIAM J. Discrete

Math. 26(4), 1733–1757 (2012)
24. Pollaczek-Geiringer, H.: Über die Gliederung ebener Fachwerke. ZAMM - J. Appl. Math. Mech. 7(1),

58–72 (1927)
25. Streinu, I., Theran, L.: Sparse hypergraphs and pebble game algorithms. Eur. J. Combinatorics 30(8),

1944–1964 (2009)
26. Tay, T.-S.: Henneberg’s method for bar and body frameworks. Struct. Topol. 17, 53–58 (1991)
27. Whiteley,W.: Somematroids fromdiscrete applied geometry. In J.E.Bonin, J.G.Oxley, andB.Servatius

(ed.), Matroid theory. volume 197 of Contemporary Mathematics. pages 171–311. AMS, (1996)
28. Whiteley, W.: Rigidity of molecular structures: generic and geometric analysis. In: Thorpe, M.F.,

Duxbury, P.M. (eds.) Rigidity Theory and Applications, pp. 21–46. Springer, US, Boston, MA (2002)
29. Yu, C., Anderson, B.D.O.: Development of redundant rigidity theory for formation control. Int. J.

Robust Nonlinear Control 19(13), 1427–1446 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Sparse graphs and an augmentation problem
	Abstract
	1 Introduction
	1.1 Notation

	2 Preliminaries
	2.1 Algorithmic preliminaries

	3 The reduction of the general problem
	4 Preprocessing
	5 The min-max theorem for the reduced problem
	5.1 Proof of Theorem 5.5

	6 Algorithmic aspects
	7 Complexity results
	8 Concluding remarks
	8.1 Hypergraphs
	8.2 Simple graphs
	8.3 Adding multiple edges
	8.4 Further directions

	Acknowledgements
	References

