Skip to main content

Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

Abstract

The parametric global minimum cut problem concerns a graph \(G = (V, E)\) where the cost of each edge is an affine function of a parameter \(\mu \in \mathbb {R}^d\) for some fixed dimension d. We consider the problems of finding the next breakpoint in a given direction, and finding a parameter value with maximum minimum cut value. We develop strongly polynomial algorithms for these problems that are faster than a naive application of Megiddo’s parametric search technique. Our results indicate that the next breakpoint problem is easier than the max value problem.

H. Aissi—This research benefited from the support of the FMJH Program PGMO and from the support of EDF, Thales, Orange et Criteo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, P.K., Sharir, M., Toledo, S.: An efficient multi-dimensional searching technique and its applications. Technical report CS-1993-20, Department of Computer Science, Duke University (1993)

    Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surv. (CSUR) 30(4), 412–458 (1998)

    Article  Google Scholar 

  3. Aissi, H., McCormick, S.T., Queyranne, M.: Faster algorithms for next breakpoint and max value for parametric global minimum cuts. arXiv:1911.11847 (2019)

  4. Aissi, H., Mahjoub, A.R., McCormick, S.T., Queyranne, M.: Strongly polynomial bounds for multiobjective and parametric global minimum cuts in graphs and hypergraphs. Math. Program. 154(1–2), 3–28 (2015). https://doi.org/10.1007/s10107-015-0944-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  6. Carstensen, P.J.: Complexity of some parametric integer and network programming problems. Math. Program. 26(1), 64–75 (1983). https://doi.org/10.1007/BF02591893

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B., Friedman, J.: A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990). https://doi.org/10.1007/BF02122778

    Article  MathSciNet  MATH  Google Scholar 

  8. Clarkson, K.L.: New applications of random sampling in computational geometry. Discret. Comput. Geom. 2(2), 195–222 (1987). https://doi.org/10.1007/BF02187879

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, E., Megiddo, N.: Maximizing concave functions in fixed dimensions. In: Pardalos, P.M. (ed.) Complexity in Numerical Optimization, pp. 74–87. World Scientific Publishing, Singapore (1993)

    Chapter  Google Scholar 

  10. Cohen, E., Megiddo, N.: Algorithms and complexity analysis for some flow problems. Algorithmica 11(3), 320–340 (1994). https://doi.org/10.1007/BF01240739

    Article  MathSciNet  MATH  Google Scholar 

  11. Edelsbrunner, H., Herbert, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discret. Comput. Geom. 4(1), 311–336 (1989)

    Article  MathSciNet  Google Scholar 

  12. Fernández-Baca, D.: Multi-parameter minimum spanning trees. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 217–226. Springer, Heidelberg (2000). https://doi.org/10.1007/10719839_22

    Chapter  Google Scholar 

  13. Fernández-Baca, D., Venkatachalam, B.: Sensitivity analysis in combinatorial optimization. In: Gonzalez, T. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC Press, Boca Raton (2007)

    Google Scholar 

  14. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 21–30 (1993)

    Google Scholar 

  15. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)

    Article  MathSciNet  Google Scholar 

  16. Karger, D.R.: Enumerating parametric global minimum cuts by random interleaving. In: Proceedings of the Forty-Eight Annual ACM Symposium on Theory of Computing, pp. 542–555 (2016)

    Google Scholar 

  17. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4), 601–640 (1996)

    Article  MathSciNet  Google Scholar 

  18. Matous̆ek, J., Schwarzkopf, O.: Linear optimization queries. In: Proceedings of the Eighth ACM Symposium on Computational Geometry, pp. 16–25 (1992)

    Google Scholar 

  19. Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4(4), 414–424 (1979)

    Article  MathSciNet  Google Scholar 

  20. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30, 852–865 (1983)

    Article  MathSciNet  Google Scholar 

  21. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MathSciNet  Google Scholar 

  22. Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  23. Mulmuley, K.: Lower bounds in a parallel model without bit operations. SIAM J. Comput. 28(4), 1460–1509 (1999)

    Article  MathSciNet  Google Scholar 

  24. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discret. Math. 5(1), 54–66 (1992)

    Article  MathSciNet  Google Scholar 

  25. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  26. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in undirected networks. SIAM J. Discret. Math. 10, 469–481 (1997)

    Article  MathSciNet  Google Scholar 

  27. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  28. Radzik, T.: Parametric flows, weighted means of cuts, and fractional combinatorial optimization. In: Pardalos, P. (ed.) Complexity in Numerical Optimization, pp. 351–386. World Scientific Publishing, Singapore (1993)

    Chapter  Google Scholar 

  29. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

    Article  MathSciNet  Google Scholar 

  30. Tokuyama, T.: Minimax parametric optimization problems and multi-dimensional parametric searching. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 75–83 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassene Aissi .

Editor information

Editors and Affiliations

5 Appendix

5 Appendix

1.1 5.1 Geometric tools

A classical problem in computational geometry called point location in arrangements (PLA) is useful to our algorithm. PLA has been widely used in various contexts such as linear programming [1, 18] or parametric optimization [9, 30]. For more details, see [22, Chapter 5].

Given a simplex P, an arrangement \(A(\mathcal {H})\) formed by a set \(\mathcal {H}\) of hyperplanes in \(\mathbb {R}^d\), let \(A(\mathcal {H})\cap P\) denote the restriction of the arrangement \(A(\mathcal {H})\) to P. The goal of PLA is to construct a data structure in order to quickly locate a cell of \(A(\mathcal {H})\cap P\) containing an unknown target value \(\bar{\mu }\). Solving PLA requires the explicit construction of the arrangement \(A(\mathcal {H})\) which can be done in an excessive \(O(|\mathcal {H}|^d)\) running time [22, Theorem 6.1.2]. For our purposes, it is sufficient to solve the following simpler form of PLA.

  • \(P_\mathrm{{reg}}(\mathcal {H},P,\bar{\mu })\) Given a simplex P, a set \(\mathcal {H}\) of hyperplanes in \(\mathbb {R}^d\), and a target value \(\bar{\mu }\), locate a d-dimensional simplex \(R\subseteq A(\mathcal {H})\cap P\) containing a target and unknown value \(\bar{\mu }\).

Cohen and Megiddo [9] consider the problem Max(f) of maximizing a concave function \(f: \mathbb {R}^d \rightarrow \mathbb {R}\) with fixed dimension d and give, under some conditions, a polynomial time algorithm. This algorithm also uses problem \(P_\mathrm{{reg}}(\mathcal {H},P,\bar{\mu })\) as a subroutine, where in this context the target value \(\bar{\mu }\) is the optimal value of Max(f). Let T(d) denote the time required to solve Max(f) with d parameters and T(0) denote the running time of evaluating f at any value in \(\mathbb {R}^d\). The authors solve \(P_\mathrm{{reg}}(\mathcal {H},P,\bar{\mu })\) recursively using multidimensional parametric search technique. See also [7, 8, 30].

Lemma 5

Given a simplex P, a set \(\mathcal {H}\) of hyperplanes in \(\mathbb {R}^d\), and a target and unknown value \(\bar{\mu }\), \(P_\mathrm{{reg}}(\mathcal {H},P,\bar{\mu })\) can be solved in \(O(\log (|\mathcal {H}|)T(d-1) + |\mathcal {H}|)\) time.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aissi, H., McCormick, S.T., Queyranne, M. (2020). Faster Algorithms for Next Breakpoint and Max Value for Parametric Global Minimum Cuts. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics