Skip to main content

Learning to Calibrate and Rerank Multi-label Predictions

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11908))

  • 2058 Accesses

Abstract

A multi-label classifier assigns a set of labels to each data object. A natural requirement in many end-use applications is that the classifier also provides a well-calibrated confidence (probability) to indicate the likelihood of the predicted set being correct; for example, an application may automate high-confidence predictions while manually verifying low-confidence predictions. The simplest multi-label classifier, called Binary Relevance (BR), applies one binary classifier to each label independently and takes the product of the individual label probabilities as the overall label-set probability (confidence). Despite its many known drawbacks, such as generating suboptimal predictions and poorly calibrated confidence scores, BR is widely used in practice due to its speed and simplicity. We seek in this work to improve both BR’s confidence estimation and prediction through a post calibration and reranking procedure. We take the BR predicted set of labels and its product score as features, extract more features from the prediction itself to capture label constraints, and apply Gradient Boosted Trees (GB) as a calibrator to map these features into a calibrated confidence score. GB not only produces well-calibrated scores (aligned with accuracy and sharp), but also models label interactions, correcting a critical flaw in BR. We further show that reranking label sets by the new calibrated confidence makes accurate set predictions on par with state-of-the-art multi-label classifiers—yet calibrated, simpler, and faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/c/wise-2014/data.

  2. 2.

    This particular way of bucketing is only for visualization purpose; when we evaluate calibration quantitatively we follow the standard practice of using 10 equal-width buckets.

References

  1. Belanger, D., McCallum, A.: Structured prediction energy networks. In: Proceedings of the International Conference on Machine Learning (2016)

    Google Scholar 

  2. Brukhim, N., Globerson, A.: Predict and constrain: modeling cardinality in deep structured prediction. arXiv preprint arXiv:1802.04721 (2018)

  3. Bucak, S.S., Mallapragada, P.K., Jin, R., Jain, A.K.: Efficient multi-label ranking for multi-class learning: application to object recognition. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2098–2105. IEEE (2009)

    Google Scholar 

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  5. Chen, T., Navrátil, J., Iyengar, V., Shanmugam, K.: Confidence scoring using whitebox meta-models with linear classifier probes. arXiv preprint arXiv:1805.05396 (2018)

  6. Chen, Y.N., Lin, H.T.: Feature-aware label space dimension reduction for multi-label classification. In: NIPS, pp. 1529–1537 (2012)

    Google Scholar 

  7. Cheng, W., Hüllermeier, E., Dembczynski, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: ICML 2010, pp. 279–286 (2010)

    Google Scholar 

  8. Collins, M., Koo, T.: Discriminative reranking for natural language parsing. Comput. Linguist. 31(1), 25–70 (2005)

    Article  MathSciNet  Google Scholar 

  9. Deng, J., et al.: Large-scale object classification using label relation graphs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 48–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_4

    Chapter  Google Scholar 

  10. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

    MATH  Google Scholar 

  11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232 (2001)

    Google Scholar 

  12. Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

    Article  Google Scholar 

  13. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 195–200. ACM (2005)

    Google Scholar 

  14. Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(2), 243–268 (2007)

    Article  MathSciNet  Google Scholar 

  15. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5

    Chapter  Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. arXiv preprint arXiv:1706.04599 (2017)

  18. Gygli, M., Norouzi, M., Angelova, A.: Deep value networks learn to evaluate and iteratively refine structured outputs. arXiv preprint arXiv:1703.04363 (2017)

  19. Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: NIPS, vol. 22, pp. 772–780 (2009)

    Google Scholar 

  20. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using calibrated regression. arXiv preprint arXiv:1807.00263 (2018)

  21. Kuleshov, V., Liang, P.S.: Calibrated structured prediction. In: Advances in Neural Information Processing Systems, pp. 3474–3482 (2015)

    Google Scholar 

  22. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in probabilistic classifier chains with beam search. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 665–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33460-3_48

    Chapter  Google Scholar 

  23. Li, C., Wang, B., Pavlu, V., Aslam, J.A.: Conditional Bernoulli mixtures for multi-label classification. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 2482–2491 (2016)

    Google Scholar 

  24. Liu, W., Tsang, I.: On the optimality of classifier chain for multi-label classification. In: Advances in Neural Information Processing Systems, pp. 712–720 (2015)

    Google Scholar 

  25. Montañes, E., Senge, R., Barranquero, J., Quevedo, J.R., del Coz, J.J., Hüllermeier, E.: Dependent binary relevance models for multi-label classification. Pattern Recogn. 47(3), 1494–1508 (2014)

    Article  Google Scholar 

  26. Nam, J., Mencía, E.L., Kim, H.J., Fürnkranz, J.: Maximizing subset accuracy with recurrent neural networks in multi-label classification. In: Advances in Neural Information Processing Systems, pp. 5413–5423 (2017)

    Google Scholar 

  27. Park, S.H., Fürnkranz, J.: Multi-label classification with label constraints. In: ECML PKDD 2008 Workshop on Preference Learning, pp. 157–171 (2008)

    Google Scholar 

  28. Platt, J., et al.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  29. Qin, K., Li, C., Pavlu, V., Aslam, J.: Adapting RNN sequence prediction model to multi-label set prediction. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Long and Short Papers), vol. 1, pp. 3181–3190 (2019)

    Google Scholar 

  30. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  31. Robertson, T.: Order restricted statistical inference. Technical report (1988)

    Google Scholar 

  32. Sasabuchi, S., Inutsuka, M., Kulatunga, D.: A multivariate version of isotonic regression. Biometrika 70(2), 465–472 (1983)

    Article  MathSciNet  Google Scholar 

  33. Shen, L., Sarkar, A., Och, F.J.: Discriminative reranking for machine translation. In: HLT-NAACL 2004 (2004)

    Google Scholar 

  34. Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the 1st International Workshop on Learning from Multi-label Data, pp. 101–116 (2009)

    Google Scholar 

  35. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 2007, 1–13 (2007)

    Article  Google Scholar 

  36. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  37. Xie, P., Salakhutdinov, R., Mou, L., Xing, E.P.: Deep determinantal point process for large-scale multi-label classification. In: ICCV, pp. 473–482 (2017)

    Google Scholar 

  38. Yen, I.E., Huang, X., Zhong, K., Ravikumar, P., Dhillon, I.S.: PD-Sparse: a primal and dual sparse approach to extreme multiclass and multilabel classification. In: Proceedings of the 33nd International Conference on Machine Learning (2016)

    Google Scholar 

  39. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: KDD, pp. 694–699. ACM (2002)

    Google Scholar 

  40. Zhang, M.L., Zhang, K.: Multi-label learning by exploiting label dependency. In: KDD, pp. 999–1008. ACM (2010)

    Google Scholar 

  41. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  42. Zhou, T., Tao, D., Wu, X.: Compressed labeling on distilled labelsets for multi-label learning. Mach. Learn. 88(1–2), 69–126 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Jeff Woodward for sharing his observation regarding prediction set cardinality, Pavel Metrikov for the helpful discussion on the model design, and reviewers for suggesting related work. This work has been generously supported through a grant from the Massachusetts General Physicians Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, C., Pavlu, V., Aslam, J., Wang, B., Qin, K. (2020). Learning to Calibrate and Rerank Multi-label Predictions. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11908. Springer, Cham. https://doi.org/10.1007/978-3-030-46133-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46133-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46132-4

  • Online ISBN: 978-3-030-46133-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics