Skip to main content

CatchCore: Catching Hierarchical Dense Subtensor

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

Abstract

Dense subtensor detection gains remarkable success in spotting anomaly and fraudulent behaviors for the multi-aspect data (i.e., tensors), like in social media and event streams. Existing methods detect the densest subtensors flatly and separately, with an underlying assumption that these subtensors are exclusive. However, many real-world scenario usually present hierarchical properties, e.g., the core-periphery structure or dynamic communities in networks. In this paper, we propose CatchCore, a novel framework to effectively find the hierarchical dense subtensors. We first design a unified metric for dense subtensor detection, which can be optimized with gradient-based methods. With the proposed metric, CatchCore detects hierarchical dense subtensors through the hierarchy-wise alternative optimization. Finally, we utilize the minimum description length principle to measure the quality of detection result and select the optimal hierarchical dense subtensors. Extensive experiments on synthetic and real-world datasets demonstrate that CatchCore outperforms the top competitors in accuracy for detecting dense subtensors and anomaly patterns. Additionally, CatchCore identified a hierarchical researcher co-authorship group with intense interactions in DBLP dataset. Also CatchCore scales linearly with all aspects of tensors.

Code of this paper is available at: http://github.com/wenchieh/catchcore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Entrywise, the n-mode product between the tensor \(\varvec{\mathscr {R}}\) and vector \(\varvec{x}\) can be denoted as: .

  2. 2.

    We use \(\, \bar{\times }_{(-n)} \,\) to denote conducting full-mode product except the n-th mode.

  3. 3.

    More generally, we can also set different density ratios between hierarchies rather than the fixed one parameter for specific concern.

  4. 4.

    \(\log ^{*} x\) is the universal code length for an integer x [18].

References

  1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. In: Data Mining and Knowledge Discovery (2015)

    Google Scholar 

  2. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. WAW

    Google Scholar 

  3. Balalau, O.D., Bonchi, F., Chan, T.H.H., Gullo, F., Sozio, M.: Finding subgraphs with maximum total density and limited overlap. In: WSDM 2015 (2015)

    Google Scholar 

  4. Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Eng. 24(7), 1216–1230 (2010)

    Article  Google Scholar 

  5. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  MathSciNet  Google Scholar 

  6. Edler, D., Bohlin, L., et al.: Mapping higher-order network flows in memory and multilayer networks with infomap. Algorithms 10(4), 112 (2017)

    Article  MathSciNet  Google Scholar 

  7. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: VLDB 2005. VLDB Endowment (2005)

    Google Scholar 

  8. Gorovits, A., Gujral, E., Papalexakis, E.E., Bogdanov, P.: LARC: learning activity-regularized overlapping communities across time. In: SIGKDD 2018. ACM (2018)

    Google Scholar 

  9. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hooi, B., Song, H.A., Beutel, A., Shah, N., Shin, K., Faloutsos, C.: FRAUDAR: bounding graph fraud in the face of camouflage. In: SIGKDD 2016, pp. 895–904 (2016)

    Google Scholar 

  11. Jiang, M., Beutel, A., Cui, P., Hooi, B., Yang, S., Faloutsos, C.: A general suspiciousness metric for dense blocks in multimodal data. In: ICDM 2015 (2015)

    Google Scholar 

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. In: SIAM (2009)

    Google Scholar 

  13. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Link Mining: Models, Algorithms, and Applications (2010)

    Google Scholar 

  14. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: WWW (2008)

    Google Scholar 

  15. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  Google Scholar 

  16. Lin, C.J., Moré, J.J.: Newton’s method for large bound-constrained optimization problems. SIAM J. Optim. 9(4), 1100–1127 (1999)

    Article  MathSciNet  Google Scholar 

  17. Papadimitriou, S., Sun, J., Faloutsos, C., Yu, P.S.: Hierarchical, parameter-free community discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 170–187. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_12

    Chapter  Google Scholar 

  18. Rissanen, J.: A universal prior for integers and estimation by minimum description length. Ann. Stat. 11(2), 416–431 (1983)

    Article  MathSciNet  Google Scholar 

  19. Sariyüce, A.E., Pinar, A.: Fast hierarchy construction for dense subgraphs. VLDB

    Google Scholar 

  20. Shin, K., Hooi, B., Faloutsos, C.: M-zoom: fast dense-block detection in tensors with quality guarantees. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 264–280. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_17

    Chapter  Google Scholar 

  21. Shin, K., Hooi, B., Kim, J., Faloutsos, C.: D-cube: Dense-block detection in terabyte-scale tensors. In: WSDM 2017. ACM (2017)

    Google Scholar 

  22. Shin, K., Hooi, B., Kim, J., Faloutsos, C.: DenseAlert: incremental dense-subtensor detection in tensor streams (2017)

    Google Scholar 

  23. Siddique, B., Akhtar, N.: Temporal hierarchical event detection of timestamped data. In: ICCCA 2017 (2017)

    Google Scholar 

  24. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: SIGKDD 2013. ACM (2013)

    Google Scholar 

  25. Yang, B., Di, J., Liu, J., Liu, D.: Hierarchical community detection with applications to real-world network analysis. In: DKE (2013)

    Google Scholar 

  26. Zhang, S., et al.: Hidden: hierarchical dense subgraph detection with application to financial fraud detection. In: SDM 2017. SIAM (2017)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Strategic Priority Research Program of CAS (XDA19020400), NSF of China (61772498, 61425016, 61872206), and the Beijing NSF (4172059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, W., Liu, S., Cheng, X. (2020). CatchCore: Catching Hierarchical Dense Subtensor. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics