Skip to main content

GeNWeMME: A Network-Based Computational Method for Prioritizing Groups of Significant Related Genes in Cancer

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11347))

Included in the following conference series:

Abstract

Identifying significant mutations in cancer is a challenging problem in Cancer Genomics. Computational methods for identifying significant mutations have been developed in recent years. In this work, we present a flexible computational method named GeNWeMME (Gene Network + Weighted Mutations + Mutual Exclusivity). Our method uses an extensive biological base for prioritizing groups of significant and related genes in cancer. Our method considers data about mutations, type of mutations, gene interaction networks and mutual exclusivity pattern. All these aspects can be used according to the objective of the analysis by cancer genomics professionals, that can choose weights for each aspect. We test our method in four types of cancer where it was possible to identify known cancer genes and suggest others for further biological validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbieri, C.E., et al.: Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature genetics 44(6), 685–689 (2012). https://doi.org/10.1038/ng.2279

    Article  Google Scholar 

  2. Cho, A., Shim, J.E., Kim, E., Supek, F., Lehner, B., Lee, I.: MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Genome Biol. 17(1), 129 (2016). https://doi.org/10.1186/s13059-016-0989-x

    Article  Google Scholar 

  3. Ciriello, G., Cerami, E., Sander, C., Schultz, N.: Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012)

    Article  Google Scholar 

  4. Cutigi, J.F., Evangelista, A.F., Simao, A.: A proposal of a graph-based computational method for ranking significant set of related genes in cancer. In: Anais do XIX Simposio Brasileiro de Computacao Aplicada a Saúde, pp. 300–305. SBC, Porto Alegre, RS, Brasil (2019)

    Google Scholar 

  5. Ding, L., et al.: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216), 1069–1075 (2008)

    Article  Google Scholar 

  6. Fabregat, A., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 46(D1), D649–D655 (2018). https://doi.org/10.1093/nar/gkx1132

    Article  MathSciNet  Google Scholar 

  7. Futreal, P.A., et al.: A census of human cancer genes. Nat. Rev. Cancer 4(3), 177–183 (2004)

    Article  Google Scholar 

  8. Garraway, L.A., Lander, E.S.: Lessons from the cancer genome. Cell 153(1), 17–37 (2013). https://doi.org/10.1016/j.cell.2013.03.002

    Article  Google Scholar 

  9. Kim, Y.A., Cho, D.Y., Dao, P., Przytycka, T.M.: MEMcover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics 31(12), i284–i292 (2015). https://doi.org/10.1093/bioinformatics/btv247

    Article  Google Scholar 

  10. Kim, Y.A., Madan, S., Przytycka, T.M.: WeSME: uncovering mutual exclusivity of cancer drivers and beyond. Bioinformatics 33(6), 814–821 (2017). https://doi.org/10.1093/bioinformatics/btw242

    Article  Google Scholar 

  11. Lawrence, M.S., et al.: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013)

    Google Scholar 

  12. Leiserson, M.D.M., Blokh, D., Sharan, R., Raphael, B.J.: Simultaneous identification of multiple driver pathways in cancer. PLOS Comput. Biol. 9(5), 1–15 (2013). https://doi.org/10.1371/journal.pcbi.1003054

    Article  Google Scholar 

  13. Leiserson, M.D.M., et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47(2), 106–114 (2015). https://doi.org/10.1038/ng.3168

    Article  Google Scholar 

  14. Leiserson, M.D., Wu, H.T., Vandin, F., Raphael, B.J.: CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biol. 16(1), 160 (2015). https://doi.org/10.1186/s13059-015-0700-7

    Article  Google Scholar 

  15. Repana, D., et al.: The network of cancer genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 20(1), 1 (2019). https://doi.org/10.1186/s13059-018-1612-0

    Article  Google Scholar 

  16. Reyna, M.A., Leiserson, M.D.M., Raphael, B.J.: Hierarchical hotnet: identifying hierarchies of altered subnetworks. Bioinformatics 34(17), i972–i980 (2018). https://doi.org/10.1093/bioinformatics/bty613

    Article  Google Scholar 

  17. Stratton, M.R.: The cancer genome. Nature 458(7239), 719–724 (2009). https://doi.org/10.1038/nature07943

    Article  Google Scholar 

  18. Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011). https://doi.org/10.1089/cmb.2010.0265

    Article  MathSciNet  Google Scholar 

  19. Vandin, F., Upfal, E., Raphael, B.J.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22(2), 375–385 (2012). https://doi.org/10.1101/gr.120477.111

    Article  Google Scholar 

  20. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W.: Cancer genome landscapes. Science 339(6127), 1546–1558 (2013). https://doi.org/10.1126/science.1235122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Francisco Cutigi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cutigi, J.F., Evangelista, A.F., Simao, A. (2020). GeNWeMME: A Network-Based Computational Method for Prioritizing Groups of Significant Related Genes in Cancer. In: Kowada, L., de Oliveira, D. (eds) Advances in Bioinformatics and Computational Biology. BSB 2019. Lecture Notes in Computer Science(), vol 11347. Springer, Cham. https://doi.org/10.1007/978-3-030-46417-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46417-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46416-5

  • Online ISBN: 978-3-030-46417-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics