Abstract
Quantitative analysis of brain tumors is crucial for surgery planning, follow-up and subsequent radiation treatment of glioma. Finding an automatic and reproducible solution may save time to physicians and contribute to improve overall poor prognosis of glioma patients. In this paper, we present our current BraTS contribution on developing an accurate and robust tumor segmentation algorithm. Our network architecture implements a multiscale input module which has been thought to maximize the extraction of features associated to the multiple image modalities before they are merged in a modified U-Net network avoiding the loss of specific information provided by each modality and improving brain tumor segmentation performance. Our method’s current performance on the BraTS 2019 test set is dice scores of 0.775 ± 0.212, 0.865 ± 0.133 and 0.789 ± 0.266 for enhancing tumor, whole tumor and tumor core, respectively with and overall dice of 0.81.
S. Rosas González and T. Birgui Sekou—Authors stand for equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kleihues, P., Burger, P.C., Scheithauer, B.W.: The new WHO classification of brain tumours. Brain Pathol. 3(3), 255–268 (1993)
Hoshide, R., Jandial, R.: 2016 world health organization classification of central nervous system tumors: an era of molecular biology. World Neurosurg. 94, 561–562 (2016)
Kubben, P.L., Postma, A.A., Kessels, A.G.H., van Overbeeke, J.J., van Santbrink, H.: Intraobserver and interobserver agreement in volumetric assessment of glioblastoma multiforme resection. Neurosurgery 67(5), 1329–1334 (2010)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2015)
Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in press)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. TCIA (2017)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. TCIA (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Norman, B., Pedoia, V., Majumdar, S.: Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry. Radiology 288, 177–185 (2018). 172322
Sevastopolsky, A.: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recogn. Image Anal. 27(3), 618–624 (2017). https://doi.org/10.1134/S1054661817030269
Roy, A.G., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)
Skourt, B.A., El Hassani, A., Majda, A.: Lung CT image segmentation using deep neural networks. Proc. Comput. Sci. 127, 109–113 (2018)
Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers Tiramisu: fully convolutional DenseNets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–1183. IEEE (2017)
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, Klaus H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)
McKinley, R., Meier, R., Wiest, R.: Ensembles of CNNs with label-uncertainty for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 456–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_40
Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)
Zhou, C., Chen, S., Ding, C., Tao, D.: Learning contextual and attentive information for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 497–507. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_44
Kingma, D.P., Ba, L.J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations ICLR (2015)
Acknowledgements
This work was supported by the Mexican Council for Science and Technology CONACYT (Grant 494208), INSA CVL and the Inserm unit 1253.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rosas González, S., Birgui Sekou, T., Hidane, M., Tauber, C. (2020). 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-46643-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46642-8
Online ISBN: 978-3-030-46643-5
eBook Packages: Computer ScienceComputer Science (R0)