Skip to main content

Automatic Classification of Brain Tumor Types with the MRI Scans and Histopathology Images

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11993))

Included in the following conference series:

  • 1656 Accesses

Abstract

In the study, we used two neural networks, including VGG16 and Resnet50, to process the whole slide images with feature extracting. To classify the three types of brain tumors (i.e., glioblastoma, oligodendroglioma, and astrocytoma), we tried several clustering methods include k-means and random forest classification methods. In the prediction stage, we compared the prediction results with and without MRI features. The results support that the classification method performed with image features extracted by VGG16 has the highest prediction accuracy. Moreover, we found that combining with radiomics generated from MR images slightly improved the accuracy of the classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  3. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  4. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  6. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. CoRR (2015). http://arxiv.org/abs/1511.00561

  7. Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  Google Scholar 

  8. Breiman, L.: Manual on setting up, using, and understanding. Random Forests v4.0 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Yi Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chan, HW., Weng, YT., Huang, TY. (2020). Automatic Classification of Brain Tumor Types with the MRI Scans and Histopathology Images. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46643-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46642-8

  • Online ISBN: 978-3-030-46643-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics