Abstract
Gliomas are the most common malignant brain tumours with intrinsic heterogeneity. Accurate segmentation of gliomas and their sub-regions on multi-parametric magnetic resonance images (mpMRI) is of great clinical importance, which defines tumour size, shape and appearance and provides abundant information for preoperative diagnosis, treatment planning and survival prediction. Recent developments on deep learning have significantly improved the performance of automated medical image segmentation. In this paper, we compare several state-of-the-art convolutional neural network models for brain tumour image segmentation. Based on the ensembled segmentation, we present a biophysics-guided prognostic model for patient overall survival prediction which outperforms a data-driven radiomics approach. Our method won the second place of the MICCAI 2019 BraTS Challenge for the overall survival prediction.
S. Wang and C. Dai—The two authors contributed equally to this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive (2017)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive 286/2017 (2017)
Bakas, S.: Advancing the cancer genome atlas Glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BraTS Challenge. arXiv:1811.02629 (2018)
Baldock, A.L., Ahn, S., Rockne, R., Johnston, S., Neal, M., et al.: Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas. PLoS One 9(10), e99057 (2014)
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38
Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008)
Li, C., Wang, S., Liu, P., Torheim, T., Boonzaier, N.R., et al.: Decoding the interdependence of multiparametric magnetic resonance imaging to reveal patient subgroups correlated with survivals. Neoplasia 21(5), 442–449 (2019)
Li, C., Wang, S., Serra, A., Torheim, T., Yan, J.L., et al.: Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma. Eur. Radiol. 29, 1–12 (2019)
Li, C., et al.: Intratumoral heterogeneity of glioblastoma infiltration revealed by joint histogram analysis of diffusion tensor imaging. Neurosurgery 85, 524–534 (2018)
Li, C., Wang, S., Yan, J.L., Torheim, T., Boonzaier, N.R., et al.: Characterizing tumor invasiveness of glioblastoma using multiparametric magnetic resonance imaging. J. Neurosurg. 1, 1–8 (2019)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., Delattre, J.Y.: Primary brain tumours in adults. Lancet 379(9830), 1984–1996 (2012)
Scialpi, M., Bianconi, F., Cantisani, V., Palumbo, B.: Radiomic machine learning: is it really a useful method for the characterization of prostate cancer? Radiology 291(1), 269 (2019)
van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)
Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)
Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16
Wu, C., Zou, Y., Zhan, J.: DA-U-Net: densely connected convolutional networks and decoder with attention gate for retinal vessel segmentation. In: IOP Conference Series: Materials Science and Engineering, vol. 533, p. 012053. IOP Publishing (2019)
Acknowledgement
This work was supported by the SmartHeart EPSRC Programme Grant (EP/P001009/1) and the NIHR Imperial Biomedical Research Centre (BRC).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, S., Dai, C., Mo, Y., Angelini, E., Guo, Y., Bai, W. (2020). Automatic Brain Tumour Segmentation and Biophysics-Guided Survival Prediction. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11993. Springer, Cham. https://doi.org/10.1007/978-3-030-46643-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-46643-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46642-8
Online ISBN: 978-3-030-46643-5
eBook Packages: Computer ScienceComputer Science (R0)