Skip to main content

Visualising Railway Safety Verification

  • Conference paper
  • First Online:
Formal Techniques for Safety-Critical Systems (FTSCS 2019)

Abstract

The application of formal methods to the railway domain has a long-standing history within the academic community. Many approaches can provide both successful proofs of safety and, in the case of failure, traces explaining the failure. However, if a given model does produce a failure, it is difficult to understand the conditions that led to the issue. We present a method to visualise railway safety issues to help engineers and researchers explore the problem so that they can adjust their designs accordingly. We evaluate our approach through qualitative real-world case studies with researchers and railway engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aber, N., Blanc, B., Ferkane, N., Meziani, M., Ordioni, J.: RBS2HLL. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 191–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_12

    Chapter  Google Scholar 

  2. Archambault, D., Purchase, H.C.: Can animation support the visualization of dynamic graphs? Inf. Sci. 330, 495–509 (2016)

    Article  Google Scholar 

  3. Archambault, D., Purchase, H.C.: On the effective visualisation of dynamic attribute cascades. Inf. Vis. 15(1), 51–63 (2016)

    Article  Google Scholar 

  4. Barsky, A., Munzner, T., Gardy, J., Kincaid, R.: Cerebral: visualizing multiple experimental conditions on a graph with biological context. IEEE Trans. Vis. Comput. Graph. 14(6), 1253–1260 (2008)

    Article  Google Scholar 

  5. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum 36(1), 133–159 (2017)

    Article  Google Scholar 

  6. Bernardeschi, C., Fantechi, A., Gnesi, S., Mongardi, G.: Proving safety properties for embedded control systems. In: Hlawiczka, A., Silva, J.G., Simoncini, L. (eds.) EDCC 1996. LNCS, vol. 1150, pp. 321–332. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61772-8_46

    Chapter  Google Scholar 

  7. Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection data. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 44–56. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_4

    Chapter  Google Scholar 

  8. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996)

    Article  Google Scholar 

  9. Dwyer, T.: Scalable, versatile and simple constrained graph layout. Comput. Graph. Forum 28(3), 991–998 (2009)

    Article  Google Scholar 

  10. Dwyer, T., Koren, Y., Marriott, K.: IPSep-CoLa: an incremental procedure for separation constraint layout of graphs. IEEE Trans. Vis. Comput. Graph. 12(5), 821–828 (2006)

    Article  Google Scholar 

  11. Eisner, C.: Using symbolic model checking to verify the railway stations of Hoorn-Kersenboogerd and Heerhugowaard. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 99–109. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2_9

    Chapter  Google Scholar 

  12. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-based development and formal methods in the railway industry. IEEE Softw. 30(3), 28–34 (2013)

    Article  Google Scholar 

  13. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-14261-1_11

    Chapter  Google Scholar 

  14. Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to ladder logic diagrams. In: FMICS 1998. CWI (1998)

    Google Scholar 

  15. Groote, J.F., van Vlijmen, S., Koorn, J.: The safety guaranteeing system at station hoorn-kersenboogerd. Technical report, Utrecht University (1995)

    Google Scholar 

  16. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 205–220. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_16

    Chapter  Google Scholar 

  17. Idani, A., Ledru, Y., Ait Wakrime, A., Ben Ayed, R., Bon, P.: Towards a tool-based domain specific approach for railway systems modeling and validation. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 23–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_2

    Chapter  Google Scholar 

  18. Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: SAFECOMP 2018 (2018)

    Google Scholar 

  19. James, P.: Sat-based model checking and its applications to train control software. Master’s thesis, Swansea University (2010)

    Google Scholar 

  20. James, P., et al.: Verification of solid state interlocking programs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 253–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_19

    Chapter  Google Scholar 

  21. James, P., Roggenbach, M.: Encapsulating formal methods within domain specific languages: a solution for verifying railway scheme plans. Math. Comput. Sci. 8(1), 11–38 (2014). https://doi.org/10.1007/s11786-014-0174-0

    Article  MathSciNet  MATH  Google Scholar 

  22. James, P., Trumble, M., Treharne, H., Roggenbach, M., Schneider, S.: OnTrack: an open tooling environment for railway verification. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 435–440. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38088-4_30

    Chapter  Google Scholar 

  23. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  Google Scholar 

  24. Kanso, K., Moller, F., Setzer, A.: Verification of safety properties in railway interlocking systems defined with ladder logic. In: AVOCS08. Glasgow University (2008)

    Google Scholar 

  25. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_11

    Chapter  Google Scholar 

  26. Nöllenburg, M.: A survey on automated metro map layout methods. In: Schematic Mapping Workshop (2014)

    Google Scholar 

  27. Parillaud, C., Fonteneau, Y., Belmonte, F.: Interlocking formal verification at alstom signalling. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 215–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_14

    Chapter  Google Scholar 

  28. Tufte, E.: Envisioning Information. Graphics Press, Cheshire (1990)

    Google Scholar 

  29. Tversky, B., Morrison, J., Betrancourt, M.: Animation: can it facilitate? Int. J. Hum.-Comput. Stud. 57(4), 247–262 (2002)

    Article  Google Scholar 

  30. Wolff, A.: Drawing subway maps: a survey. Informatik - Forschung und Entwicklung 22(1), 23–44 (2007). https://doi.org/10.1007/s00450-007-0036-y

    Article  Google Scholar 

  31. Wu, H.-Y., Niedermann, B., Takahashi, S., Nöllenburg, V.: A survey on computing schematic network maps: the challenge to interactivity. In: The 2nd Schematic Mapping Workshop, Vienna, Austria (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pantekis, F., James, P., O’Reilly, L., Archambault, D., Moller, F. (2020). Visualising Railway Safety Verification. In: Hasan, O., Mallet, F. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2019. Communications in Computer and Information Science, vol 1165. Springer, Cham. https://doi.org/10.1007/978-3-030-46902-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46902-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46901-6

  • Online ISBN: 978-3-030-46902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics