Skip to main content

Design and Evaluation of the Platform for Weight-Shifting Exercises with Compensatory Forces Monitoring

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

Details of a platform for the rehabilitation of people with severe balance impairment are discussed in the paper. Based upon a commercially available static parapodium, modified to fit force sensors, this device is designed to give a new, safe tool to physiotherapists. It is designed for the patients who cannot maintain equilibrium during a bipedal stance and need to hold to or lean on something during the rehabilitation. Visual, real-time information about weight distribution between left and right leg as well as the information about the force applied to the pillows supporting the patient’s body is provided to the patient with help of a LED display. The control system allows registering forces applied by the patient to the device and analyze them after the therapy. The results of a preliminary evaluation of the device are presented in the paper with four healthy and one Cerebral Palsy ataxic participants. Two exercise scenarios are tested showing significant dependence between balance impairment and compensatory forces measured by the device, as well as a notable difference in how the subject strives for better results if the visual feedback is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patton, J., et al.: KineAssist: design and development of a robotic overground gait and balance therapy device. Top. Stroke Rehabil. 15, 131–139 (2008). https://doi.org/10.1310/tsr1502-131

    Article  Google Scholar 

  2. Harun, A., Semenov, Y.R., Agrawal, Y.: Vestibular function and activities of daily living. Gerontol. Geriatr. Med. 1, 233372141560712 (2015). https://doi.org/10.1177/2333721415607124

    Article  Google Scholar 

  3. Cattaneo, D., De Nuzzo, C., Fascia, T., Macalli, M., Pisoni, I., Cardini, R.: Risks of falls in subjects with multiple sclerosis. Arch. Phys. Med. Rehabil. 83, 864–867 (2002). https://doi.org/10.1053/apmr.2002.32825

    Article  Google Scholar 

  4. Allen, N.E., Sherrington, C., Paul, S.S., Canning, C.G.: Balance and falls in parkinson’s disease: a meta-analysis of the effect of exercise and motor training. Mov. Disord. 26, 1605–1615 (2011). https://doi.org/10.1002/mds.23790

    Article  Google Scholar 

  5. Geurts, A.C.H., de Haart, M., van Nes, I.J.W., Duysens, J.: A review of standing balance recovery from stroke. Gait Posture 22, 267–281 (2005). https://doi.org/10.1016/j.gaitpost.2004.10.002

    Article  Google Scholar 

  6. Horak, F.B.: Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35(Suppl 2), ii7–ii11 (2006). https://doi.org/10.1093/ageing/afl077

    Article  Google Scholar 

  7. Batra, M., Sharma, V.P., Batra, V., Malik, G.K., Pandey, R.M.: Postural reactions: an elementary unit for development of motor control. Disabil. CBR Incl. Dev. 22, 134–137 (2011). https://doi.org/10.5463/dcid.v22i2.30

    Article  Google Scholar 

  8. Bronstein, A.M.: Clinical disorders of balance, posture and gait. Arnold (2004)

    Google Scholar 

  9. Horak, F.B.: Clinical assessment of balance disorders. Gait Posture 6, 76–84 (1997). https://doi.org/10.1016/s0966-6362(97)00018-0

    Article  MathSciNet  Google Scholar 

  10. Winter, D.A., Patla, A.E., Frank, J.S.: Assessment of balance control in humans. Med. Prog. Technol. 16, 31–51 (1990)

    Google Scholar 

  11. Roerdink, M., Geurts, A.C.H., de Haart, M., Beek, P.J.: On the relative contribution of the paretic leg to the control of posture after stroke. Neurorehabil. Neural Repair. 23, 267–274 (2009). https://doi.org/10.1177/1545968308323928

    Article  Google Scholar 

  12. Drużbicki, M., Przysada, G., Rykała, J., Podgórska, J., Guzik, A., Kołodziej, K.: Ocena przydatności wybranych skal i metod stosowanych w ocenie chodu i równowagi osób po udarze mózgu Evaluation of the effectiveness of selected scales and methods used in the assessment of gait and balance after a cerebral stroke. Przegląd Med. Uniw. Rzesz. 21–31 (2013). https://doi.org/10.15584/ejcem

  13. Matjacić, Z., Hesse, S., Sinkjaer, T.: BalanceReTrainer: a new standing-balance training apparatus and methods applied to a chronic hemiparetic subject with a neglect syndrome. NeuroRehabilitation. 18, 251–259 (2003)

    Article  Google Scholar 

  14. Katz, D.I., White, D.K., Alexander, M.P., Klein, R.B.: Recovery of ambulation after traumatic brain injury. Arch. Phys. Med. Rehabil. 85, 865–869 (2004). https://doi.org/10.1016/j.apmr.2003.11.020

    Article  Google Scholar 

  15. Dietz, V., Fouad, K.: Restoration of sensorimotor functions after spinal cord injury. Brain 137, 654–667 (2014). https://doi.org/10.1093/brain/awt262

    Article  Google Scholar 

  16. Ferrazzoli, D., et al.: Balance dysfunction in Parkinson’s disease: the role of posturography in developing a rehabilitation program. Parkinsons Dis. 2015, 1–10 (2015). https://doi.org/10.1155/2015/520128

    Article  Google Scholar 

  17. Walter, S.J., Sola, G.P., Sacks, J., Lucero, Y., Langbein, E., Weaver, F.: Indications for a home standing program for individuals with spinal cord injury. J. Spinal Cord Med. 22, 152–158 (1999). https://doi.org/10.1080/10790268.1999.11719564

    Article  Google Scholar 

  18. Verschuren, O., Peterson, M.D., Balemans, A.C.J., Hurvitz, E.A.: Exercise and physical activity recommendations for people with cerebral palsy. Dev. Med. Child Neurol. 58, 798–808 (2016). https://doi.org/10.1111/dmcn.13053

    Article  Google Scholar 

  19. Rodby-Bousquet, E., Hägglund, G.: Use of manual and powered wheelchair in children with cerebral palsy: a cross-sectional study. BMC Pediatr. 10, 59 (2010). https://doi.org/10.1186/1471-2431-10-59

    Article  Google Scholar 

  20. Palisano, R.J., Rosenbaum, P., Bartlett, D., Livingston, M.H.: Content validity of the expanded and revised gross motor function classification system. Dev. Med. Child Neurol. 50, 744–750 (2008). https://doi.org/10.1111/j.1469-8749.2008.03089.x

    Article  Google Scholar 

  21. Tardieu, C., de la Tour, E.H., Bret, M.D., Tardieu, G.: Muscle hypoextensibility in children with cerebral palsy: I. Clinical and experimental observations. Arch. Phys. Med. Rehabil. 63, 97–102 (1982)

    Google Scholar 

  22. Martinsson, C., Himmelmann, K.: Effect of weight-bearing in abduction and extension on hip stability in children with cerebral palsy. Pediatr. Phys. Ther. 23, 150–157 (2011). https://doi.org/10.1097/pep.0b013e318218efc3

    Article  Google Scholar 

  23. Shumway-Cook, A., Hutchinson, S., Kartin, D., Price, R., Woollacott, M.: Effect of balance training on recovery of stability in children with cerebral palsy. Dev. Med. Child Neurol. 45, 591–602 (2003)

    Article  Google Scholar 

  24. Shirota, C., et al.: Robot-supported assessment of balance in standing and walking. J. Neuroeng. Rehabil. 14, 80 (2017). https://doi.org/10.1186/s12984-017-0273-7

    Article  Google Scholar 

  25. Shanahan, C.J., et al.: Technologies for advanced gait and balance assessments in people with multiple sclerosis. Front. Neurol. 8, 708 (2018). https://doi.org/10.3389/fneur.2017.00708

    Article  Google Scholar 

  26. Park, D.-S., Lee, G.: Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation. J. Neuroeng. Rehabil. 11, 99 (2014). https://doi.org/10.1186/1743-0003-11-99

    Article  Google Scholar 

  27. Clark, R.A., McGough, R., Paterson, K.: Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 34, 288–291 (2011). https://doi.org/10.1016/j.gaitpost.2011.04.010

    Article  Google Scholar 

  28. Goble, D.J., Cone, B.L., Fling, B.W.: Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”. J. Neuroeng. Rehabil. 11, 12 (2014). https://doi.org/10.1186/1743-0003-11-12

    Article  Google Scholar 

  29. Liuzzo, D.M., et al.: Measurements of weight bearing asymmetry using the Nintendo Wii fit balance board are not reliable for older adults and individuals with stroke. J. Geriatr. Phys. Ther. 40, 37–41 (2017). https://doi.org/10.1519/jpt.0000000000000065

    Article  Google Scholar 

  30. Reed-Jones, R.J., Dorgo, S., Hitchings, M.K., Bader, J.O.: WiiFitTM Plus balance test scores for the assessment of balance and mobility in older adults. Gait Posture 36, 430–433 (2012). https://doi.org/10.1016/j.gaitpost.2012.03.027

    Article  Google Scholar 

  31. Livingstone, R., Paleg, G.: Measuring outcomes for children with cerebral palsy who use gait trainers. Technologies 4, 22 (2016). https://doi.org/10.3390/technologies4030022

    Article  Google Scholar 

  32. Paleg, G., Livingstone, R.: Outcomes of gait trainer use in home and school settings for children with motor impairments: a systematic review. Clin. Rehabil. 29, 1077–1091 (2015). https://doi.org/10.1177/0269215514565947

    Article  Google Scholar 

  33. Michalska, A., Dudek, J., Bieniek, M., Tarasow-Zych, A., Zawadzka, K.: The application of the balance trainer parapodium in the therapy of children with cerebral palsy. Fizjoterapia Pol. 11, 273–285 (2011)

    Google Scholar 

  34. Winter, D.A., Patla, A.E., Ishac, M., Gage, W.H.: Motor mechanisms of balance during quiet standing. J. Electromyogr. Kinesiol. 13, 49–56 (2003). https://doi.org/10.1016/s1050-6411(02)00085-8

    Article  Google Scholar 

  35. Winter, D.A., Prince, F., Frank, J.S., Powell, C., Zabjek, K.F.: Unified theory regarding A/P and M/L balance in quiet stance. J. Neurophysiol. 75, 2334–2343 (1996). https://doi.org/10.1152/jn.1996.75.6.2334

    Article  Google Scholar 

  36. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 37, 693–700 (2000)

    Google Scholar 

  37. Jezernik, S., Colombo, G., Keller, T., Frueh, H., Morari, M.: Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation Technol. Neural Interface 6, 108–115 (2003). https://doi.org/10.1046/j.1525-1403.2003.03017.x

    Article  Google Scholar 

  38. Noé, F., Quaine, F.: Insertion of the force applied to handles into centre of pressure calculation modifies the amplitude of centre of pressure shifts. Gait Posture 24, 382–385 (2006). https://doi.org/10.1016/j.gaitpost.2005.10.001

    Article  Google Scholar 

  39. Sieklicki, W., Barański, R., Grocholski, S., Matejek, P., Dyrda, M., Klepacki, K.: A new rehabilitation device for balance impaired individuals. In: BIODEVICES 2019 - 12th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 12th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2019 (2019)

    Google Scholar 

  40. Elliott, D.B., Flanagan, J.: Assessment of visual function. In: Elliott, D.B. (ed.) Clinical Procedures in Primary Eye Care, pp. 29–81. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  41. Ghasia, F., Brunstom, J., Tychsen, L.: Visual acuity and visually evoked responses in children with cerebral palsy: gross motor function classification scale. Br. J. Ophthalmol. 93, 1068–1072 (2009). https://doi.org/10.1136/bjo.2008.156372

    Article  Google Scholar 

  42. Jacobson, B.H., Thompson, B., Wallace, T., Brown, L., Rial, C.: Independent static balance training contributes to increased stability and functional capacity in community-dwelling elderly people: a randomized controlled trial. Clin. Rehabil. 25, 549–556 (2011). https://doi.org/10.1177/0269215510392390

    Article  Google Scholar 

  43. Veneman, J.F., et al.: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 379–386 (2007). https://doi.org/10.1109/tnsre.2003.818185

    Article  Google Scholar 

  44. Bayona, N.A., Bitensky, J., Salter, K., Teasell, R.: The role of task-specific training in rehabilitation therapies. Top. Stroke Rehabil. 12, 58–65 (2005). https://doi.org/10.1310/bqm5-6ygb-mvj5-wvcr

    Article  Google Scholar 

  45. Kilgard, M.P.: Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998). https://doi.org/10.1126/science.279.5357.1714

    Article  Google Scholar 

  46. Matjacić, Z., Johannesen, I.L., Sinkjaer, T.: A multi-purpose rehabilitation frame: a novel apparatus for balance training during standing of neurologically impaired individuals. J. Rehabil. Res. Dev. 37, 681–691 (2000)

    Google Scholar 

  47. Catherine, W., Brenda, B.J., Elsie, C.G.: Use of visual feedback in retraining balance following acute stroke. Phys. Ther. 80, 886–895 (2000). https://doi.org/10.1093/ptj/80.9.886

    Article  Google Scholar 

  48. Pasma, J.H., Engelhart, D., Schouten, A.C., van der Kooij, H., Maier, A.B., Meskers, C.G.M.: Impaired standing balance: the clinical need for closing the loop. Neuroscience 267, 157–165 (2014). https://doi.org/10.1016/j.neuroscience.2014.02.030

    Article  Google Scholar 

  49. Mancini, M., Horak, F.B.: The relevance of clinical balance assessment tools to differentiate balance deficits. Eur. J. Phys. Rehabil. Med. 46, 239–248 (2010)

    Google Scholar 

  50. Bailey, I.L., Lovie, J.E.: New design principles for visual acuity letter charts. Am. J. Optom. Physiol. Opt. 53, 740–745 (1976)

    Article  Google Scholar 

  51. Stoller, O., et al.: Short-time weight-bearing capacity assessment for non-ambulatory patients with subacute stroke: reliability and discriminative power. BMC Res. Notes 8, 723 (2015). https://doi.org/10.1186/s13104-015-1722-7

    Article  Google Scholar 

  52. Rogers, M.W., Martinez, K.M., Waller, S.M., Gray, V.L.: Recovery and rehabilitation of standing balance after stroke. In: Stroke Recovery and Rehabilitation, pp. 343–374 (2009)

    Google Scholar 

  53. Goldie, P.A., Matyas, T.A., Evans, O.M., Galea, M.P., Bach, T.M.: Maximum voluntary weight-bearing by the affected and unaffected legs in standing following stroke. Clin. Biomech. (Bristol, Avon) 11, 333–342 (1996)

    Article  Google Scholar 

  54. Rougier, P.R., Genthon, N.: Dynamical assessment of weight-bearing asymmetry during upright quiet stance in humans. Gait Posture 29, 437–443 (2009). https://doi.org/10.1016/j.gaitpost.2008.11.001

    Article  Google Scholar 

  55. Kamphuis, J.F., de Kam, D., Geurts, A.C.H., Weerdesteyn, V.: Is weight-bearing asymmetry associated with postural instability after stroke? A systematic review. Stroke Res. Treat 2013, 1–13 (2013). https://doi.org/10.1155/2013/692137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiktor Sieklicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sieklicki, W., Barański, R., Grocholski, S., Matejek, P., Dyrda, M. (2020). Design and Evaluation of the Platform for Weight-Shifting Exercises with Compensatory Forces Monitoring. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics