Skip to main content

Analysis of Discrete Models for Ecosystem Ecology

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

We consider discrete qualitative models of ecosystems viewed as collections of interacting living (animals, plants ...) and nonliving entities (air, water, soil ...), whose conditions of appearance/disappearance are controlled by a set of formal rules (i.e., processes). We present here two methods to statically analyze models. The first one is used to simplify models removing redundant information. The second one is a rule-based method allowing to compare ecosystems. This method relies on a measure of similarity and on an optimization algorithm. In addition, the proposed method allows detecting patterns (i.e., ecological processes or sets of processes) in ecosystems. We have validated the method by applying it against a set of models and patterns provided by research projects of ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course the substitution is saved and may be recovered if necessary.

  2. 2.

    This formula and all the following ones were also present in [9].

  3. 3.

    The choice of 3 min is arbitrary.

  4. 4.

    The machine used is: Intel Core i7 64 bits quad-core at 2.9 GHz with 32G RAM, running Linux 4.4, SAT4J version NIGHTLY.v20171122 OpenJDK 25/Java 1.8.

References

  1. Agnihotri, K., Sharma, N.: Developments in ecological modeling based on cellular automata. Innov. Syst. Des. Eng. 6, 75–78 (2015)

    Google Scholar 

  2. Bae, J., Liu, L., Caverlee, J., Rouse, W.B.: Process mining, discovery, and integration using distance measures. In: 2006 IEEE International Conference on Web Services (ICWS 2006), pp. 479–488, September 2006

    Google Scholar 

  3. Baldan, P., Bocci, M., Cocco, N., Simeoni, M.: Comparing metabolic pathways through potential fluxes: a selective opening approach. In: BioPPN@Petri Nets (2013)

    Google Scholar 

  4. Baldan, P., Cocco, N., Giummolè, F., Simeoni, M.: Comparing metabolic pathways through reactions and potential fluxes. Trans. Petri Nets Other Models Concurr. 8, 1–23 (2013). https://doi.org/10.1007/978-3-642-40465-8

    Article  MATH  Google Scholar 

  5. Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling metabolic pathways: a survey. Nat. Comput. 9(4), 955–989 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cardelli, L.: Abstract machines of systems biology. Trans. Comput. Syst. Biol. 3737, 145–168 (2005)

    Article  Google Scholar 

  7. Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)

    Article  MathSciNet  Google Scholar 

  8. Delaplace, F., Di Giusto, C., Giavitto, J., Klaudel, H.: Activity networks with delays an application to toxicity analysis. Fundamenta Informaticae (2018, to appear)

    Google Scholar 

  9. Di Giusto, C., Gaucherel, C., Klaudel, H., Pommereau, F.: Pattern matching in discrete models for ecosystem ecology. In: Maria, E.D., Fred, A.L.N., Gamboa, H. (eds.) Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2019), BIOINFORMATICS, Prague, Czech Republic, 22–24 February 2019, vol. 3, pp. 101–111. SciTePress (2019). https://doi.org/10.5220/0007485801010111

  10. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011). http://www.sciencedirect.com/science/article/pii/S0306437910001006, Special Issue: Semantic Integration of Data, Multimedia, and Services

  11. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fund. Inform. 75(1–4), 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49612-0

    Book  MATH  Google Scholar 

  13. Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68894-5_3. http://dl.acm.org/citation.cfm?id=1786698.1786702

    Chapter  MATH  Google Scholar 

  14. Gaucherel, C.: Influence of spatial patterns on ecological applications of extremal principles. Ecol. Model. 193, 531–542 (2006). https://doi.org/10.1016/j.ecolmodel.2005.08.035

    Article  Google Scholar 

  15. Gaucherel, C., Pommereau, F.: Using discrete systems to exhaustively characterize the dynamics of an integrated ecosystem. Methods Ecol. Evol. 1–13 (2019). https://doi.org/10.1111/2041-210X.13242

  16. Gaucherel, C., Boudon, F., Houet, T., Castets, M., Godin, C.: Understanding patchy landscape dynamics: towards a landscape language. PLoS ONE 7(9), 16 (2012). https://doi.org/10.1371/journal.pone.0046064. https://halshs.archives-ouvertes.fr/halshs-00750971

  17. Gaucherel, C., Houllier, F., Auclair, D., Houet, T.: Dynamic landscape modelling: the quest for a unifying theory. Living Rev. Landscape Res. 8(2), 5–31 (2014). https://hal.archives-ouvertes.fr/hal-01211675

  18. Giavitto, J.L., Malcolm, G., Michel, O.: Rewriting systems and the modelling of biological systems. Comp. Funct. Genomics 5, 95–99 (2004)

    Article  Google Scholar 

  19. van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and refinement of actions. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 237–248. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51486-4_71

    Chapter  MATH  Google Scholar 

  20. Grafahrend-Belau, E., et al.: Modularization of biochemical networks based on classification of Petri net t-invariants. BMC Bioinform. 9(1), 90 (2008). https://doi.org/10.1186/1471-2105-9-90

    Article  Google Scholar 

  21. Henkel, R., Hoehndorf, R., Kacprowski, T., Knüpfer, C., Liebermeister, W., Waltemath, D.: Notions of similarity for systems biology models. Briefings Bioinform. 19(1), 77–88 (2018). https://doi.org/10.1093/bib/bbw090

    Article  Google Scholar 

  22. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean Model. Comput. 7, 59–64 (2010)

    Google Scholar 

  23. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins Company, Baltimore (1925). http://library.wur.nl/WebQuery/clc/529141

  24. May, R.M.: Will a large complex system be stable? Nature 238, 413–414 (1972). https://doi.org/10.1038/238413a0

    Article  Google Scholar 

  25. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002). http://science.sciencemag.org/content/298/5594/824

  26. Mooiman, L.: Comparing stories with the use of Petri nets. Technical report, University of Amsterdam (2015)

    Google Scholar 

  27. Paun, A., Paun, M., Rodríguez-Patón, A., Sidoroff, M.: P systems with proteins on membranes: a survey. Int. J. Found. Comput. Sci. 22(1), 39–53 (2011)

    Article  MathSciNet  Google Scholar 

  28. PB16: Pseudo-Boolean competition 2016. Satellite Event of SAT 2016 (2016). http://www.cril.univ-artois.fr/PB16

  29. Roussel, O., Manquinho, V.: Input/output format and solver requirements for the competitions of pseudo-Boolean solvers (2012). http://www.cril.univ-artois.fr/PB12/format.pdf

  30. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York (2011)

    Book  Google Scholar 

  31. SymPy development team: SymPy (2016). http://www.sympy.org

  32. Terese: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press (2003)

    Google Scholar 

  33. Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973)

    Article  Google Scholar 

  34. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)

    Article  Google Scholar 

  35. Wang, J., He, T., Wen, L., Wu, N., ter Hofstede, A.H.M., Su, J.: A behavioral similarity measure between labeled Petri nets based on principal transition sequences. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 394–401. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16934-2_27

    Chapter  Google Scholar 

  36. Xiao, L., Zheng, L., Xiao, J., Huang, Y.: A graphical query language for querying Petri nets. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, R.-D. (eds.) UNISCON 2009. LNBIP, vol. 20, pp. 514–525. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01112-2_52

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank David Monniaux for his suggestions on MAXSAT and PBO solvers, and Daniel Le Berre who has recommended Sat4j and has been very helpful concerning its installation and use. We would also like to thanks the anonymous reviewers for their precious work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Di Giusto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Giusto, C., Gaucherel, C., Klaudel, H., Pommereau, F. (2020). Analysis of Discrete Models for Ecosystem Ecology. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics