Skip to main content

Heart Rate Variability and Electrodermal Activity Biosignal Processing: Predicting the Autonomous Nervous System Response in Mental Stress

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2019)

Abstract

The study of the autonomous nervous system (ANS) has played an important role, over the last years, in prognostic and diagnostic of cardiac diseases, as well as, in the assessment of psychological stress. The most common techniques to evalute the balance of the ANS are invasive and unable to provide a continuous monitoring of the patients. The advances in technology and the development of wearable sensors have provided new alternative methods to study the ANS. The analysis of Heart Rate Variability (HRV) and Electrodermal Activity (EDA) are nonivasive methods to assess the ANS with wearables devices. The wearable device used provides information about HRV with the acquisition of photoplethysmography signals from the wrist and EDA from the fingers. The processing of the biosignals was performed by submitting the participants to a mental arithmetic stress test. The results showed that the participants exhibited two distinct response during stress - “Flight or Fight”. These responses were classified using machine-learning techniques. The constructed models were able to predict how the subjects will respond in a situation of stress, based only on baseline features. The accuracy of the models using only HRV baseline features was of approximately 80% and the accuracy using simultaneously HRV and EDA baseline features was of 77%, when assigning the correct response during stress to the participant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, M.W., Kadish, A.H., Parker, M.A., Goldberger, J.J.: Effect of physiologic and pharmacologic adrenergic stimulation on heart rate variability. J. Am. Coll. Cardiol. 24(4), 1082–1090 (1994). https://doi.org/10.1016/0735-1097(94)90874-5

    Article  Google Scholar 

  2. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3), R1 (2007). https://doi.org/10.1088/0967-3334/28/3/R01

    Article  Google Scholar 

  3. Bansal, D., Khan, M., Salhan, A.: A review of measurement and analysis of heart rate variability. In: 2009 International Conference on Computer and Automation Engineering, pp. 243–246 (2009). https://doi.org/10.1109/ICCAE.2009.70. http://ieeexplore.ieee.org/document/4804526/

  4. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190(1), 80–91 (2010). https://doi.org/10.1016/j.jneumeth.2010.04.028, http://dx.doi.org/10.1016/j.jneumeth.2010.04.028

  5. Boucsein, W.: Electodermal Activity. 2 edn. (2012). https://doi.org/10.1007/978-1-4614-1126-0

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  7. Bussmann, B.: Differentiation of autonomic nervous activity in different stages of coma displayed by power spectrum analysis of heart rate variability. Eur. Arch. Psychiatry Clin. Neurosci. 248, 46–52 (1998). https://doi.org/10.1007/s004060050016

    Article  Google Scholar 

  8. Cochran, W.G.: The \(\chi \)2 test of goodness of fit. Ann. Math. Stat. 23(3), 315–345 (2013)

    Article  Google Scholar 

  9. Donges, N.: The random forest algorithm (2018). https://machinelearning-blog.com/2018/02/06/the-random-forest-algorithm/. https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd

  10. Gamboa, H., Fred, A.: Electrodermal activity model. Psychophysiology (April), 30 (2008)

    Google Scholar 

  11. Guidelines: Guidelines heart rate variability. Eur. Heart J. 17, 354–381 (1996). https://doi.org/10.1161/01.CIR.93.5.1043. http://www.mendeley.com/research/guidelines-heart-rate-variability-2/

  12. Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology (2011)

    Google Scholar 

  13. Hamilton, J.L., Alloy, L.B.: Atypical reactivity of heart rate variability to stress and depression across development: systematic review of the literature and directions for future research (2016). https://doi.org/10.1016/j.cpr.2016.09.003, http://dx.doi.org/10.1016/j.cpr.2016.09.003

  14. Hjortskov, N., Rissén, D., Blangsted, A.K., Fallentin, N., Lundberg, U., Søgaard, K.: The effect of mental stress on heart rate variability and blood pressure during computer work. Eur. J. Appl. Physiol. 92(1–2), 84–89 (2004). https://doi.org/10.1007/s00421-004-1055-z

    Article  Google Scholar 

  15. Hsu, C.H., et al.: Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction. Acta Anaesthesiol. Taiwanica 50(1), 12–18 (2012). https://doi.org/10.1016/j.aat.2012.03.002, http://dx.doi.org/10.1016/j.aat.2012.03.002

  16. Jang, D.G., Park, S., Hahn, M., Park, S.H.: A real-time pulse peak detection algorithm for the photoplethysmogram. Int. J. Electron. Electr. Eng. 2(1), 45–49 (2014). https://doi.org/10.12720/ijeee.2.1.45-49

    Article  Google Scholar 

  17. Kuntamalla, S., Ram, L., Reddy, G.: An efficient and automatic systolic peak detection algorithm for photoplethysmographic signals. Int. J. Comput. Appl. 97(19), 975–8887 (2014)

    Google Scholar 

  18. Langewitz, W., Ruddel, H.: Spectral analysis of heart rate variability under mental stress. J. Hypertens Suppl. 7(6), S32-3 (1989). https://doi.org/NLM; 19900511. http://www.ncbi.nlm.nih.gov/pubmed/2632731

    Google Scholar 

  19. Lima., R., Osório., D., Gamboa., H.: Heart rate variability and electrodermal activity in mental stress aloud: predicting the outcome. In: Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: BIOSIGNALS, pp. 42–51. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007355200420051

  20. Logier, R., De Jonckheere, J., Dassonneville, A.: An efficient algorithm for R-R intervals series filtering. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 3937–3940. IEEE Engineering in Medicine and Biology Society (2004). https://doi.org/10.1109/IEMBS.2004.1404100

  21. Lord, S.W., Senior, R.R., Das, M., Whittam, A.M., Murray, A., McComb, J.M.: Low-frequency heart rate variability: reproducibility in cardiac transplant recipients and normal subjects. Clin. Sci. 100(1), 43 (2001). https://doi.org/10.1042/cs20000111

    Article  Google Scholar 

  22. Mahmud, M.S., Fang, H., Wang, H.: An integrated wearable sensor for unobtrusive continuous measurement of autonomic nervous system. IEEE Internet Things J. 6(1), 1104–1113 (2019). https://doi.org/10.1109/JIOT.2018.2868235

    Article  Google Scholar 

  23. McDonald, J.H.: Kruskal–Wallis test - Handbook of Biological Statistics (2014). http://www.biostathandbook.com/kruskalwallis.html

  24. Miranda Dantas, E., et al.: Spectral analysis of heart rate variability with the autoregressive method: what model order to choose? Comput. Biol. Med. 42(2), 164–170 (2012). https://doi.org/10.1016/j.compbiomed.2011.11.004

    Article  Google Scholar 

  25. Parsons, T.D., Courtney, C.G.: An initial validation of the virtual reality paced auditory serial addition test in a college sample. J. Neurosci. Methods 222, 15–23 (2014). https://doi.org/10.1016/j.jneumeth.2013.10.006, http://dx.doi.org/10.1016/j.jneumeth.2013.10.006

  26. Piepoli, M., et al.: Reproducibility of heart rate variability indices daring exercise stress testing and inotrope infusion in chronic heart failure patients. Clin. Sci. 91(s1), 87–88 (1996). https://doi.org/10.1042/cs0910087supp

    Article  Google Scholar 

  27. Pinna, G.D., et al.: Heart rate variability measures: a fresh look at reliability. Clin. Sci. 113(3), 131–140 (2007). https://doi.org/10.1042/cs20070055

    Article  Google Scholar 

  28. Posada-Quintero, H., Florian, J., Orjuela-Cañón, A., Chon, K.: Electrodermal activity is sensitive to cognitive stress under water. Front. Physiol. 8(JAN), 1–8 (2018). https://doi.org/10.3389/fphys.2017.01128

    Article  Google Scholar 

  29. Posada-Quintero, H.F., Bolkhovsky, J.B.: Machine learning models for the identification of cognitive tasks using autonomic reactions from heart rate variability and electrodermal activity. Behav. Sci. 9(4), 45 (2019). https://doi.org/10.3390/bs9040045

    Article  Google Scholar 

  30. Posada-Quintero, H.F., Dimitrov, T., Moutran, A., Park, S., Chon, K.H.: Analysis of reproducibility of noninvasive measures of sympathetic autonomic control based on electrodermal activity and heart rate variability. IEEE Access 7, 22523–22531 (2019). https://doi.org/10.1109/ACCESS.2019.2899485

    Article  Google Scholar 

  31. Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, A.D., Aljama-Corrales, T., Charleston-Villalobos, S., Chon, K.H.: Power spectral density analysis of electrodermal activity for sympathetic function assessment. Ann. Biomed. Eng. 44(10), 3124–3135 (2016). https://doi.org/10.1007/s10439-016-1606-6

    Article  Google Scholar 

  32. Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, Á.D., Chon, K.H.: Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity. Am. J. Physiol. - Regul. Integr. Comparat. Physiol. 311(3), R582–R591 (2016). https://doi.org/10.1152/ajpregu.00180.2016. http://ajpregu.physiology.org/lookup/doi/10.1152/ajpregu.00180.2016

    Article  Google Scholar 

  33. Posada-quintero, H.F., Member, S., Chon, K.H., Member, S.: Frequency - domain electrodermal activity index of sympathetic function, pp. 497–500 (2016)

    Google Scholar 

  34. Royan, J., Tombaugh, T.N., Rees, L., Francis, M.: The adjusting-paced serial addition test (adjusting-PSAT): thresholds for speed of information processing as a function of stimulus modality and problem complexity. Arch. Clin. Neuropsychol. 19(1), 131–143 (2004). https://doi.org/10.1016/S0887-6177(02)00216-0

    Article  Google Scholar 

  35. Sandercock, G.R., Bromley, P.D., Brodie, D.A.: The reliability of short-term measurements of heart rate variability (2005). https://doi.org/10.1016/j.ijcard.2004.09.013

  36. Sloan, R.P., Korten, J.B., Myers, M.M.: Components of heart rate reactivity during mental arithmetic with and without speaking. Physiol. Behav. 50(5), 1039–1045 (1991). https://doi.org/10.1016/0031-9384(91)90434-P

    Article  Google Scholar 

  37. Taelman, J., Vandeput, S., Vlemincx, E., Spaepen, A., Van Huffel, S.: Instantaneous changes in heart rate regulation due to mental load in simulated office work. Eur. J. Appl. Physiol. 111(7), 1497–1505 (2011). https://doi.org/10.1007/s00421-010-1776-0

    Article  Google Scholar 

  38. Terkelsen, A.J., Mølgaard, H., Hansen, J., Andersen, O.K., Jensen, T.S.: Acute pain increases heart rate: differential mechanisms during rest and mental stress. Auton. Neurosci.: Basic Clin. 121(1–2), 101–109 (2005). https://doi.org/10.1016/j.autneu.2005.07.001

    Article  Google Scholar 

  39. Tharion, E., Parthasarathy, S., Neelakantan, N.: Short-term heart rate variability measures in students during examinations. Natl Med. J. India 22(2), 63–66 (2009)

    Google Scholar 

  40. Thomas, B.L., Claassen, N., Becker, P., Viljoen, M.: Validity of commonly used heart rate variability markers of autonomic nervous system function. Neuropsychobiology 1508 (2019). https://doi.org/10.1159/000495519

  41. Tombaugh, T.N.: A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch. Clin. Neuropsychol. 21(1), 53–76 (2006). https://doi.org/10.1016/j.acn.2005.07.006

    Article  Google Scholar 

  42. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw./Publ. IEEE Neural Netw. Counc. 10(5), 988–99 (1999). https://doi.org/10.1109/72.788640. http://www.ncbi.nlm.nih.gov/pubmed/18252602

    Article  Google Scholar 

  43. Vollmer, M.: A robust, simple and reliable measure of heart rate variability using relative RR intervals. Comput. Cardiol. 42(6), 609–612 (2015). https://doi.org/10.1109/CIC.2015.7410984

    Article  Google Scholar 

  44. Vuksanović, V., Gal, V.: Heart rate variability in mental stress aloud. Med. Eng. Phys. 29(3), 344–349 (2007). https://doi.org/10.1016/j.medengphy.2006.05.011

    Article  Google Scholar 

  45. Wachowiak, M.P., Hay, D.C., Johnson, M.J.: Assessing heart rate variability through wavelet-based statistical measures. Comput. Biol. Med. 77, 222–230 (2016). https://doi.org/10.1016/j.compbiomed.2016.07.008, http://dx.doi.org/10.1016/j.compbiomed.2016.07.008

  46. Zoltan, G.S.: Wavelet transform based HRV analysis. In: The 7th International Conference Interdisciplinarity in Engineering (INTER-ENG 2013), vol. 12, pp. 105–111 (2013). https://doi.org/10.1016/j.protcy.2013.12.462

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, R., Osório, D., Gamboa, H. (2020). Heart Rate Variability and Electrodermal Activity Biosignal Processing: Predicting the Autonomous Nervous System Response in Mental Stress. In: Roque, A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2019. Communications in Computer and Information Science, vol 1211. Springer, Cham. https://doi.org/10.1007/978-3-030-46970-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46970-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46969-6

  • Online ISBN: 978-3-030-46970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics