Skip to main content

Adapting Ensemble Neural Networks to Clinical Prediction in High-Dimensional Settings

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12109))

Included in the following conference series:

  • 2304 Accesses

Abstract

Neural networks have been investigated as models for survival data using a training criterion similar to that of the Cox proportional hazards model, a criterion not designed for clinical prediction. In this paper, we develop a new survival learning algorithm where a neural network ensemble minimizes the integrated Brier score. We compare the results obtained with this method to a standard implementation of random survival forests in R and to an ensemble of linear units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarzer, G., Vach, W., Schumacher, M.: On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat. Med. 19(4), 541–561 (2000)

    Article  Google Scholar 

  2. Luck, M., Sylvain, T., Cardinal, H., Lodi, A., Bengio, Y.: Deep learning for patient-specific kidney graft survival analysis. CoRR abs/1705.10245 (2017)

    Google Scholar 

  3. Chapfuwa, P., et al.: Adversarial time-to-event modeling. In: ICML (2018)

    Google Scholar 

  4. Fotso, S.: Deep neural networks for survival analysis based on a multi-task framework. CoRR abs/1801.05512 (2018)

    Google Scholar 

  5. Giunchiglia, E., Nemchenko, A., van der Schaar, M.: RNN-SURV: a deep recurrent model for survival analysis. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 23–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_3

    Chapter  Google Scholar 

  6. Katzman, J., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18, 24 (2018)

    Article  Google Scholar 

  7. Manyam, R.B., Zhang, Y., Keeling, W.B., Binongo, J., Kayatta, M., Carter, S.: Deep learning approach for predicting 30 day readmissions after coronary artery bypass graft surgery. CoRR abs/1812.00596 (2018)

    Google Scholar 

  8. Nezhad, M.Z., Sadati, N., Yang, K., Zhu, D.: A deep active survival analysis approach for precision treatment recommendations: application of prostate cancer. Expert Syst. Appl. 115, 16–26 (2019)

    Article  Google Scholar 

  9. Harrell, F.E., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the yield of medical tests. JAMA 247(18), 2543–2546 (1982)

    Article  Google Scholar 

  10. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)

    Article  Google Scholar 

  11. Ishwaran, H., Kogalur, U., Blackstone, E., Lauer, M.: Random survival forests. Ann. Appl. Stat. 2(3), 841–860 (2008)

    Article  MathSciNet  Google Scholar 

  12. Therneau, T., Grambsch, P.: Modeling Survival Data: Extending the Cox Model. Statistics for Biology and Health. Springer, New York (2000). https://doi.org/10.1007/978-1-4757-3294-8

    Book  MATH  Google Scholar 

  13. Fleming, T.R., Harrington, D.P.: Counting Processes and Survival Analysis. Wiley, Hoboken (2005)

    Book  Google Scholar 

  14. Broët, P., De Rycke, Y., Tubert-Bitter, P., Lellouch, J., Asselain, B., Moreau, T.: A semiparametric approach for the two-sample comparison of survival times with long-term survivors. Biometrics 57(3), 844–852 (2001)

    Article  MathSciNet  Google Scholar 

  15. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. CoRR abs/1706.02515 (2017)

    Google Scholar 

  16. Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 18(17–18), 2529–2545 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon de Montigny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Montigny, S., Broët, P. (2020). Adapting Ensemble Neural Networks to Clinical Prediction in High-Dimensional Settings. In: Goutte, C., Zhu, X. (eds) Advances in Artificial Intelligence. Canadian AI 2020. Lecture Notes in Computer Science(), vol 12109. Springer, Cham. https://doi.org/10.1007/978-3-030-47358-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47358-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47357-0

  • Online ISBN: 978-3-030-47358-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics