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Abstract. Driven by increasing demands of assisting users to dress and
match clothing properly, fashion recommendation has attracted wide
attention. Its core idea is to model the compatibility among fashion items
by jointly projecting embedding into a unified space. However, modeling
the item compatibility in such a category-agnostic manner could barely
preserve intra-class variance, thus resulting in sub-optimal performance.
In this paper, we propose a novel category-aware metric learning frame-
work, which not only learns the cross-category compatibility notions but
also preserves the intra-category diversity among items. Specifically, we
define a category complementary relation representing a pair of cate-
gory labels, e.g., tops-bottoms. Given a pair of item embeddings, we
first project them to their corresponding relation space, then model the
mutual relation of a pair of categories as a relation transition vector to
capture compatibility amongst fashion items. We further derive a neg-
ative sampling strategy with non-trivial instances to enable the genera-
tion of expressive and discriminative item representations. Comprehen-
sive experimental results conducted on two public datasets demonstrate
the superiority and feasibility of our proposed approach.

Keywords: Fashion compatibility · Fashion recommendation ·
Representation learning

1 Introduction

With the proliferation of online fashion websites, such as Polyvore1 and
Farfetch2, there are increasing demands on intelligent applications in the fashion
domain for a better user shopping experience. This drives researchers to develop
various machine learning techniques to meet such demands. Existing work is
mainly conducted for three types of fashion applications: (1) clothing retrieval
[1,1,8]: retrieving similar clothing items from the data collection based on the
query clothing item; (2) fashion attribute detection [3,11,12]: identifying cloth-
ing attributes such as color, pattern and texture from the given clothing image;
1 www.polyvore.com.
2 www.farfetch.com.
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(3) Complementary Clothing Recommendation [5,10,16,21,22]: recommending
complementary clothes that match the query clothing item to the user. In this
paper, we focus on the third application, which is more challenging and sophisti-
cated due to the fashion data complexity and heterogeneity. It requires the model
to infer compatibility among fashion items according to various complementary
characteristics, which goes beyond visual similarity measurement.

The key point to tackle the above challenges is to derive an appropriate
compatibility measurement for pairs of fashion items, which can effectively cap-
ture various fashion attributes (e.g., colors and patterns) from item images for
comparison. The major stream of existing approaches for fashion compatibil-
ity modeling adopts metric learning techniques to extract effective fashion item
representations. A typical fashion compatibility modeling strategy is to learn
a latent style space, where matching item pairs stay closer than incompatible
pairs. The compatibility of two given fashion items is computed by the pairwise
Euclidean distance or inner product between fashion item embeddings. Never-
theless, the previous work has two main limitations that lead to sub-optimal
performance. Firstly, some approaches consider fashion compatibility modeling
as a single-relational task. However, this neglects the fact that people usually
focus on different aspects of clothes from different categories. For example, peo-
ple are more likely to focus on color and material for blouses and pants, while
they may pay attention to shape and style for jeans and shoes. Moreover, using a
single unified space is likely to result in incorrect similarity transitivity in fashion
compatibility. For instance, if item A matches both B and C, while B and C
may not be compatible, the embeddings of A, B and C will be forced to be close
to each other in a single unified space, which degrades prediction performance
because the compatibility essentially does not hold transitivity property. There-
fore, such a category-independent approach will result in inaccurate item repre-
sentations. Secondly, most existing approaches merely randomly sample negative
instances from the training set. However, most of the randomly sampled triplets
are trivial ones, which may fail to support the model to learn discriminative item
representations.

In order to address the above mentioned limitations, we propose a novel
Category-Aware Fashion Metric Embedding learning network (CA-FME),
which models both instances and category-aware relation representations
through a translation operation. Specifically, we formulate the fashion compat-
ibility measurement as a multi-relational data modeling task. We treat fashion
items as entities and define pairs of compatible categories as complementary rela-
tions, e.g., blouses-skirts. The overall flowchart of CA-FME is presented in Fig. 1:
Item visual features are first extracted through a pre-trained CNN. Then, each
pair of item embeddings is projected to their corresponding category-specific
relation subspace. Finally, we model the compatibility based on a transition-
based score function. Our main contributions can be summarized as below:

– We present a novel category-aware embedding learning framework for fashion
compatibility modeling, which not only captures cross-categorical relation-
ships but also preserves the diversity of intra-category fashion item represen-
tations.
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– We devise a negative sampling strategy with non-trivial samples for discrim-
inative item representations.

– Extensive experiments have been conducted on two real world datasets,
Polyvore and FashionVC, to demonstrate the superior performance of our
model over other state-of-the-art methods.

Fig. 1. The overview of proposed CA-FME model architecture for fashion compatibil-
ity modeling. The fashion clothing dataset consists of multiple categories, e.g., Hoodies,
Skirts, Coats and Trousers. CA-FME mainly consists of three parts: (1) A pre-trained
CNN for visual feature extraction; (2) A category complementary relation embedding
space for modeling category-aware compatibility; (3) Multiple relation-specific pro-
jection spaces for preserving the intra-class diversity. The whole framework is finally
optimized via a margin-based ranking objective function in end-to-end manner.

2 Related Work

2.1 Fashion Compatibility Modeling

The mainstream of work aims to map fashion items into a latent space where
compatible item pairs are close to each other, while incompatible pairs lay in
the opposite position. McAuley et al. [13] propose to use Low-rank Mahalanobis
Transformation to learn a latent style space for minimizing the distance between
matched items and maximizing that of mismatched ones. Following this work,
Veit et al. [19] employ the Siamese CNNs to learn a metric for compatibility
measurement in an end-to-end manner. Some researchers argue that the com-
plex compatibility cannot be captured by directly learning a single latent space.
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He et. al [6] propose to learn a mixture of multiple metrics with weight confi-
dences to model the relationships between heterogeneous items. Veit et al. [18]
propose Conditional Similarity Network, which learns disentangled item features
whose dimensions can be used for separate similarity measurements. Following
this work, Vasileva et al. [17] claim that respecting type information has impor-
tant consequences. Thus, they first form type-type spaces from each pair of types
and train these spaces with triplet loss.

2.2 Knowledge Graph Embedding Learning

The techniques of representation learning on the knowledge graph have attracted
large attention in recent years. Different from the approaches implemented by
tensor factorization, e.g., [14], translation-based models [2,7,20], which is par-
tially inspired by the idea of word2vec, have achieved state-of-the-art perfor-
mance in the field of the knowledge graph. Similar to the knowledge graph, het-
erogeneous fashion recommendation can also be considered as a multi-relational
problem, where complementary categories form various relations. Enlightened by
these findings, we apply a similar idea from the knowledge graph to the fashion
domain for compatibility modeling.

3 Problem Formulation

The fashion complementary recommendation task we are tackling is formulated
as follows. Suppose we have a collection of fashion item images denoted as
O = {o1, o2, o3, ..., on}, where n is the number of items, and a set of cate-
gory labels denoted as C = {c1, c2, c3, ..., cm}, where m is the number of cat-
egories. Each fashion item oi ∈ O has a corresponding k-dim visual feature
vector v i = g(oi;Θv), v i ∈ R

k and a category label ci ∈ C. Here, g(o;Θv)
represents a pre-trained CNN with trainable parameters Θv, which extracts
visual features from a fashion item image o ∈ O. We denote a set of cate-
gory complementary relations as R = {rcicj}, where ci, cj ∈ C represent a
pair of complementary categories, such as tops-bottoms. We now use a triplet
(v i, v j , r

cicj ), s.t.,∀i, j, rcicj ∈ R to represent embeddings of a pair of fashion
items oi and oj and their corresponding category complementary relation rcicj .
Each relation rcicj ∈ R corresponds to an embedding vector r cicj ∈ R

d from
the relation embedding space. Our target is to derive a fashion compatibility
scoring function f(v i, v j , r

cicj ), which captures visual characteristics from the
item embeddings for compatibility measurement.

4 Proposed Approach

In this section, we first present our CA-FME model for fashion compatibility
modeling. Then, we introduce a novel negative sampling strategy for more effec-
tive training. Finally, we describe the optimization algorithm to train our model.
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The overview of our proposed framework is shown in Fig. 1. We aim to build a
model, which can (1) effectively model the notion of compatibility; (2) be easily
generalized to unseen fashion item compatibility measurement; (3) focus on dif-
ferent aspects of item embeddings regarding different category complementary
relations for the compatibility measurement. In particular, the framework con-
sists of a pre-trained CNN for visual feature extraction and multiple category
complementary relation subspaces for category-aware compatibility modeling.

4.1 Compatibility Modeling

To solve the above mentioned limitations, we assign each category complemen-
tary relation r ∈ R with a single d-dim transition vector r ∈ R

d. Intuitively,
these relation vectors act as different fashion compatibility decision-makers who
focus on different pairs of categories, which enables the model to concentrate on
different aspects of fashion items from different categories. In particular, given
a pair of fashion items oi and oj with their visual features v i and v j , and their
corresponding category complementary relation rcicj . If oi is compatible with
oj , the compatibility relationship can be interpreted as:

v i + r cicj ≈ v j (1)

which means oj ’s embedding v j should be the nearest neighbor to the resulting
vector of v i plus the relation vector r cicj in a specific latent space based on a
certain distance metric, e.g., L1 or L2 distance.

However, there exists one issue in the above equation: in reality, items from
a specific pair of categories share diverse fashion attributes such as material,
style and pattern. Therefore, it is insufficient to preserve intra-category diver-
sity by building only a single embedding vector for each category complementary
relation. To address this issue, we propose to build multiple relation-specific sub-
spaces, i.e., Mr ∈ R

k×d, r ∈ R, where k is the number of visual feature vector
dimensions. Using such category-aware projection operations is twofold. Firstly,
the relation-specific subspaces provide abundant trainable parameters to pre-
serve intra-category diversity. Secondly, it also provides capability for handling
unseen items through a projection operation. Thus, we define the projected item
vectors of v i and v j as,

h i = M�
rcicj v i, hj = M�

rcicj v j , h i,hj ∈ R
d (2)

With the above defined compatibility relationship modeling rule and relation-
specific projection, we now could perform compatibility score calculation within
the corresponding relation space. Given a pair of fashion items denoted as oi and
oj , and their corresponding category complementary relation rcicj , the compat-
ibility score sij is calculated as,

sij = − ‖h i + r cicj − hj‖2 (3)

where L2 distance is used.
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Algorithm 1: Negative Sampling
Input : (v i, v j , r

cicj ): a positive triplet,
Ĥ(vi,r

cicj ): negative candidate set,

H̄(vi,r
cicj ): selected negative triplet set,

N : size of negative candidate set,
M : size of selected negative triplet set, M < N

Output: The set of M negative training triplets H̄(vi,r
cicj )

1 Construct negative candidate set Ĥ(vi,r
cicj ) = {v ′

1, v
′
2, ..., v

′
N}, where

(v i, v
′
j , r

cicj ) ∈ N and c′
j = cj by uniformly sampling.

2 Compute the score f(v i, v
′
j , r

cicj ) for all v ′
j ∈ Ĥ(vi,r

cicj ) via Equation (3)

3 Construct the selected negative triplet set H̄(vi,r
cicj ) by multinomial sampling

M items from Ĥ(vi,r
cicj ) with probability in Equation (6)

4 Return: H̄(vi,r
cicj )

4.2 Negative Sampling

Negative sampling has been proven to be an effective and helpful training strat-
egy to learn discriminative item representations in various fields. We aim to
derive a simple but effective negative sampling strategy to assist our model to
identify more subtle style patterns from hard negative instances. Since a cat-
egory complementary relation corresponds to two different categories, we want
both sides of each training triplet can benefit from negative sampling. Therefore,
we define the strategy should meet the following requirements:

1. The strategy should consider both sides of training triplets.
2. The strategy should identify hard negative instances effectively and efficiently.
3. The strategy should avoid false negative samples effectively.

Now we introduce the details regarding how our designed negative sampling
strategy can meet the above-defined requirements. We also present the details
of our strategy in Algorithm 1.

Requirement 1: We propose to sample negative instances from both sides of
a given positive triplet (v i, v j , r

cicj ). In particular, we first fix v i and category
complementary relation rcicj , then replace v j by randomly sampling an item
embedding vector v ′

j from category cj . Similarly, we perform the same negative
sampling for the other side item v j .

Requirement 2: Given a positive triplet (v i, v j , r
cicj ), we first uniformly sam-

ple N negative candidates denoted as Ĥ(vi,r
cicj ) from category cj ’s item set.

Then, for each training triplet, we calculate scores for all negative triplets. This
two steps correspond to the step 1–2 in Algorithm 1. Intuitively, the nega-
tive triplets with high compatibility scores can be regarded as hard negative
samples.

Requirement 3: Despite the higher scores the harder negative samples are,
these samples are likely to be false negative, which instead has destructive impact
on the model performance. In order to avoid this issue, we propose to select
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Algorithm 2: Training CA-FME
Data : Training set of positive triplets P, negative triplets N
Input: g(o; θv): pre-trained CNN with parameters θv for visual feature

extraction,
R: category relation set,
H̄: negative triplets,
H̃: 4-tuple training set,
B: batch size

1 initialize r by Xavier initialization for each r ∈ R,
2 Mr by Xavier initialization for each r ∈ R
3 repeat
4 Sample a training batch Sbatch from P with batch size B
5 Tbatch ← ∅

6 for (oi, oj , r
cicj ) ∈ Sbatch do

7 v i = g(oi; θv)
8 v j = g(oj ; θv)

// Get negative triplets with v i and rcicj fixed

9 Construct negative triplets H̄(vi,r
cicj ) = {(v i, v

′
j , r

cicj )} via Algo. 1

10 Form the 4-tuple training set

H̃(vi,r
cicj ) = {(v i, v

′
i, v j , r

cicj )}, v ′
i ∈ H̄(vi,r

cicj )

// Get negative triplets with v j and rcicj fixed

11 Construct negative triplets H̄(vj ,r
cicj ) = {(v ′

i, v j , r
cicj )} via Algo. 1

12 Form the 4-tuple training set

H̃(vj ,r
cicj ) = {(v i, v j , v

′
j , r

cicj )}, v ′
j ∈ H̄(vi,r

cicj )

13 Tbatch ← Tbatch ∪ H̃(vi,r
cicj ) ∪ H̃(vj ,r

cicj )

14 endfor
15 Update the whole network via Hinge loss function:∑

Tbatch
�[γ + f(v i, v j , r

cicj ) − f(v i, v
′
j , r

cicj )]

16 until Convergence;

M negative items from the above sampled N negative candidates with different
probability by multinomial sampling, which corresponds to step 3 in Algorithm 1.
In particular, we grant larger probability for harder negative samples according
to their scores. Here, let S = {s1, s2, ..., sN} be the set of calculated scores
of N negative candidates. We first define the following normalization function
norm(sij) to project all the scores into the range of [0, 1],

norm(sij) =
sij − smin

smax − smin
,sij ∈ S, smin = min(S), (4)

smax = max(S) (5)

Finally, we could define the probability of sampling a negative item v̄ by:

p(v̄ j |(v i, r
cicj )) =

exp(1 − norm(f(v i, v̄ j , r
cicj )))

∑
(vi,v ′

j ,r
cicj )∈Ĥ(vi,r

cicj )
exp

(
1 − norm(f

(
v i, v ′

j , r
cicj

)
)
)

(6)
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Margin-Based Optimization. With the above defined score function and neg-
ative sampling strategy, we present the whole training steps in Algorithm 16. Let
Ĥ(vi,r

cicj ) and Ĥ(vj ,r
cicj ) denote the 4-tuple training triplets constructed using

the above defined negative sampling strategy. We could define the following
margin-based loss function as our objective function for training:

L =
∑

(vi,vj ,v ′
j ,r

cicj )∈Ĥ(vi,r
cicj )

[
f (v i, v j , r

cicj ) − f
(
v i, v

′
j , r

cicj
)

+ γ
]
+

+

∑

(vi,v ′
i,vj ,r

cicj )∈Ĥ(vj ,r
cicj )

[f (v i, v j , r
cicj ) − f (v ′

i, v j , r
cicj ) + γ]+

(7)

where γ is the margin value and [x]+ � max(0, x).
We adopt the stochastic gradient decent algorithm (SGD) for the model

optimization. In each step, we sample a mini-batch of training triplets and update
the parameters of the whole network.

5 Experiments

In this section, we first describe the experimental settings and then give com-
prehensive analysis based on the experimental results.

5.1 Dataset

We conduct our experiments on two public datasets, FashionVC and Polyvore-
Maryland, provided by Song et al. [16] and Han et al. [5] respectively.

FashionVC [16]. This dataset consists of 14,871 top item images and 13,663
bottom item images, where each item has a corresponding image, a title and a
category label. In this paper, we only consider the visual modality. Therefore,
we use images for visual information extraction and category labels to determine
which category complementary relation the item pairs belong to. We randomly
split the data according to 80%;10%;10% for training, validation and test sets,
respectively.

PolyvoreMaryland [5]. This dataset contains 21,799 outfits crawled from the
online social community website Polyvore. We use the splits provided by Han
et al. [5], which has 17,316, 3,076 and 1,407 outfits in training, testing and valida-
tion sets respectively. In this paper, we mainly study item-to-item compatibility,
therefore, we keep four main groups of fashion items: tops, bottoms, bags and
shoes from the outfit data. Each fashion item contains an image, a title and
a category label. Note that each group of fashion items have several detailed
category labels, e.g., there are hand bags and shoulder bags in the “bags” group.
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5.2 Baseline Methods

We compare our model CA-FME with several state-of-the-art models for het-
erogeneous recommendation. For the fair comparison, we set the pre-trained
Alexnet [9] as the visual feature extractor of all methods.

– SiameseNet [19]: The approach models compatibility by minimizing the
Euclidean distance between compatible pairs and maximizing the distance
between incompatible ones in a unified latent space through contrastive loss.

– Monomer [6]: The approach models fashion compatibility with a mixture of
distances computed from multiple latent spaces.

– BPR-DAE [16]: The approach models compatibility through inner-product
result of top’s and bottom’s embeddings and uses Bayesian Personalized
Ranking (BPR) [15] as their optimization objective.

– TripletNet [4]: The approach models fashion compatibility in a unified latent
space through triplet loss.

– TransNFCM [22]: The state-of-the-art method that learns item-item com-
patibility by modeling categorical relations among different fashion items.

– TA-CSN [17]: The state-of-the-art method that builds type-aware subspaces
for fashion compatibility modeling.

5.3 Parameter Settings

In our experiment, all the hyper-parameters of our approach are tuned to perform
the best on the validation set. For the fair comparison, we apply the Alexnet [9]
as the visual feature extractor for all methods. In our model, we set margin γ
as 1, learning rate α = 10−4 with momentum 0.9, batch size B = 512. Visual
embedding dimension k = 128, with dropout rate 0.5 and relation embedding
dimension is set to be 128.

5.4 Compatibility Prediction

Task Description. The compatibility prediction task aims to predict whether
a given pair of items are compatible or not. In particular, we replace one item of
each testing positive triplet with 100 randomly sampled negative items. Thus,
for each testing instance, it requires to give ranking on 101 items based on the
query image. We employ two widely-used evaluation metrics, Hit@k and Area
Under the ROC curve (AUC) to evaluate the performance of our model and
baseline methods based on the predicted compatibility scores. Hit@k is defined
as follows, which indicates the proportion of the correct predicted item ranked
in top k.

Hits@k =
#hit@k

‖Dtest‖ (8)

where Dtest denotes the collection of testing instances. The formula for AUC is
defined as below,

AUC =
∑

predpositive > prednegative
|positiveInstances| × |negativeInstances| (9)
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where
∑

predpositive > prednegative indicates the number of cases that the pre-
dicted score of positive instance is larger than negative one, by comparing the
predicted score of each positive instance with each negative instances in the
testing set.

Table 1. Performance comparison between our proposed CA-FME and other base-
line methods. CA-FME(Neg.) indicates the application of negative sampling training
strategy.

FashionVC PolyvoreMaryland

Methods AUC Hit@5 Hit@10 Hit@20 Hit@40 AUC Hit@5 Hit@10 Hit@20 Hit@40

SiameseNet 60.4 9.7 18.1 31.2 52.8 59.1 8.3 15.5 29.0 51.8

Monomer 70.2 16.9 28.6 45.8 69.1 70.5 17.6 28.9 45.7 69.0

BPR-DAE 70.9 16.7 27.3 46.7 70.4 69.5 17.3 28.2 43.9 67.5

Triplet Net 70.6 16.3 28.0 45.7 69.6 70.1 18.1 28.7 44.9 68.3

TA-CSN 71.6 16.7 28.4 46.7 70.8 70.2 17.3 28.4 45.1 68.4

TransNFCM 73.6 19.0 32.3 51.6 74.0 73.6 19.3 33.1 50.9 73.4

CA-FME 88.6 26.6 48.5 81.9 99.9 95.0 59.8 84.4 97.7 99.7

CA-FME (Neg.) 88.9 26.4 49.9 83.2 99.9 96.2 59.6 88.4 96.7 99.7

5.5 Performance Comparison

We evaluate our model with and without negative sampling strategy, i.e., CA-
FME(Neg) and CA-FME. Table 1 shows the performance comparison on two
datasets based on AUC and Hit@K evaluation metrics. From the table we have
the following observations:

– Our model achieves the best performance on both datasets by significant
margins compared with all the other state-of-the-art methods, which proves
the effectiveness and superior performance of our method.

– The category-unaware models including SiameseNet and TripletNet, which
merely learn fashion compatibility notions in a single latent space, perform
worse than category-respected models including TA-CSN and TransNFCM.
This proves that considering category label information is of great importance
in fashion compatibility modeling, which can be helpful to avoid incorrect
compatibility similarity transitivity. It also proves that items from different
categories may have very different visual characteristics for compatibility.

– Compared with category-aware methods, TA-CSN and TransNFCM, our
model obtains around 15% and 30% improvements on AUC and Hit@20
respectively. Although they build category-aware mask vectors to capture
different fashion characteristics among different categories, it is still not suf-
ficient to preserve the intra-category diversity among items. With the help
of our relation-specific projection spaces, our model can capture much more
specific information of compatibility from different categories. The improve-
ments on PolyvoreMaryland dataset are even much better in terms of AUC
and Hit@5. This is mainly because of the different number of relations in two
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datasets. We define 146 category relations in the Polyvore dataset, while there
are only 30 relations in the FashionVC dataset. It proves that more relational
spaces can significantly contribute to the improvement of performance.

– The results of CA-FME(Neg.) show that our negative sampling strategy is
helpful to improve our model’s performance, which proves the effectiveness of
our proposed training strategy.

5.6 Case Study

In this section, we conduct a case study, aiming to address a real-world fashion
recommendation task: selecting the fashion item that matches the query one. As
illustrated in Fig. 2, we conduct two query instances on the FashionVC dataset,
where the items with a green box are ground-truths. In the first case, we give the
model a woman blouse, the model successfully selects the ground-truth at first
rank. It can be observed that the model identifies the color of the first ranked
jeans matches the query blouse. Our model also successfully identifies that the
7th jeans are for men and thus gives it the lowest score. In the second case,
the model gives a relatively high score to the ground-truth item. However, the
main reason that our model gives a higher score to the first item probably due
to the color attribute. For the latter items ranked at 5–7, we think our model
successfully identifies that their shapes do not match the query skirt.

Fig. 2. Case study of fashion recommendation task by retrieving the most matching
fashion items from a set of candidates based on the query fashion item. (Color figure
online)

6 Conclusion

In this work, we introduced a novel category-aware neural model CA-FME to
model the fashion compatibility notions. It not only captures cross-category
compatibility by constructing category relation embeddings but also preserves
intra-category diversity among items through build relation-specific projection
spaces. To optimize our model, we further introduce a weighted negative sam-
pling strategy to identify high-quality negative instances, which consequently



14 Y. Li et al.

assists our model to infer discriminative representations. In addition, although
in our paper, we mainly study the compatibility of tops and bottoms, it can
easily generalized to arbitrary types of clothing items. Extensive experiments
were conducted on two public fashion datasets, which shows that our CA-FME
model can significantly outperform all the state-of-the-art methods on fashion
recommendation.
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