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Abstract. Exploiting heterogeneous information networks (HIN) to
top-N recommendation has been shown to alleviate the data sparsity
problem present in recommendation systems. This requires careful effort
in extracting relevant knowledge from HIN. However, existing models in
this setting have the following shortcomings. Mainly, they are not end-
to-end, which puts the burden on the system to first learn similarity
or commuting matrix offline using some manually selected meta-paths
before we train for the top-N recommendation objective. Further, they
do not attentively extract user-specific information from HIN, which is
essential for personalization. To address these challenges, we propose an
end-to-end neural network model – GAMMA (Graph and Multi-view
Memory Attention mechanism). We aim to replace the offline meta-path
based similarity or commuting matrix computation with a graph atten-
tion mechanism. Besides, with different semantics of items in HIN, we
propose a multi-view memory attention mechanism to learn more pro-
found user-specific item views. Experiments on three real-world datasets
demonstrate the effectiveness of our model for top-N recommendation
setting.

Keywords: Heterogeneous information network · Recommendation
systems · Memory attention network

1 Introduction

Due to exponential growth in the quantum of information available on the web,
recommendation systems become inevitable in our day to day life. The objective
of a top-N recommendation system is to come up with a ranked list of highly
probable items that the user will interact in the future. Collaborative filtering
(CF) techniques have been successful in modeling the top-N recommendation
problem. Matrix factorization (MF) models [6,7,11] and the recently proposed
neural network models such as [4,19] are a few instances of CF techniques.

However, a core strength of the CF models – users’ preferences are obtained
from like-minded users’ preferences through their historical records – is also a
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major drawback. This happens because the users interact with a very few items
as compared to available items in the system. This phenomenon leads to data
sparsity problem in recommendation systems.

Several works have been proposed to alleviate this data sparsity problem by
exploiting information coming from external sources. In particular, leveraging
knowledge coming from heterogeneous information networks is gaining more
attention recently.

Definition 1. Heterogeneous Information Network (HIN) [14]. An
information network is defined by a directed graph G(V, E) with an entity type
function fe : V → O and relation type function fr : E → R, where O and
R denote entity (object) type and relation (edge) type, respectively. Here, V
denotes the set of entities and E denotes the set of relations between the enti-
ties. This Graph G(V, E) is called Heterogeneous Information Network (HIN) if
|O| + |R| > 2.

An example of a HIN is a network consisting of movies connected with ‘actor’
and ‘genre’ entities, and ‘has’ and ‘belong to’ relationships between them, respec-
tively. In this work, we study top-N recommendation systems where items are
involved in an external heterogeneous information network. We call the above
setup top-N heterogeneous recommendation. Formally, we define this as

Problem Formulation: Top-N Heterogeneous Recommendation. Let
y(u,j) be the rating that exists between user u and item j. Here, we consider
the implicit rating setting, that is,

y(u,j) =
{

1, if (u, j) ∈ Ω
0, otherwise

where Ω = {(u, j) : user u interacts with item j}. In addition, a subset of
items are involved in HIN, that is, I ∩ V �= φ, where I denotes the set of
items. The problem of top-N heterogeneous recommendation (short for top-N
recommendation with heterogeneous information network) is to come up with
a ranked list of highly probable items for each user by utilizing the associated
HIN.

Recent advancements in deep neural networks have led to several models
proposed for HIN based recommendation systems [3,5,12,22]. However, these
models have the following shortcomings. First, they are not end-to-end – they
rely on the tedious process of manual selection of meta-paths or meta-graphs, fol-
lowed by offline embedding construction [12], similarity [3] or commuting matrix
computation [22] for the entities in the HIN. Further, the proposed model in [3]
uses similarity matrices which are inefficient in both memory and computation.
Second, each user may look for different attributes of the items, for example, a
user may decide to watch movies based on either the director or cast. We refer
to subgraphs of a HIN associated with different attributes of items as different
views. Therefore, the relevant information from the HIN should be extracted
‘view-wise’, according to each user’s individual preferences. Third, users may
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look for more deeper characteristics such as movies starring academy award-
winning actors (we call them components). In such cases, the model should not
only be able to focus on the actors of the movie but also focus on whether they
are academy award winners. This requires extraction of knowledge from the HIN
‘component-wise’ and such knowledge can potentially be used to explain why the
recommendation system suggests a particular list of movies.

Contributions. To address the above challenges, we propose GAMMA – a
Graph And Multi-view Memory Attention mechanism for the top-N heteroge-
neous recommendation problem. This is illustrated in Fig. 1. The novelty of
our approach lies in making the model end-to-end – our approach does not
require any offline similarity, commuting matrix computations or random-walk
based embedding construction. Additionally, no manual selection of meta-paths
is required. We achieve this by using graph attention networks – one for each
view of the HIN. Further, we propose a multi-view multi-head memory atten-
tion layer, henceforth the M3-layer. The responsibility of this layer is to extract
component-wise user-specific information. For example, it could extract informa-
tion such as actors who are academy-award winners. Furthermore, we propose
to use an attention mechanism to aggregate the knowledge coming from differ-
ent views according to their influence. We conduct experiments on three real-
world datasets and demonstrate the effectiveness of our model against several
state-of-the-art models for top-N recommendation setting. Our implementation
is available at https://github.com/mvijaikumar/GAMMA.

2 The Proposed Model

2.1 GAMMA

In this section, we persent our proposed model – GAMMA. The overall architec-
ture is illustrated in Fig. 1. GAMMA has five building blocks. In what follows,
we discuss them one by one in detail.

Embedding Construction from User-Item Interaction Matrix. This
block is responsible for constructing embeddings for users and items from their
interaction matrix. Let P ∈ R

|U|×d be the user embedding matrix and Q ∈ R
|I|×d

be the item embedding matrix, where |U| and |I| denote number of users
and items, and d denotes embedding dimension, respectively. Further, assume
xu ∈ R

|U| and zj ∈ R
|I| be the one-hot encoding representations for user u and

item j, respectively. We obtain the user embedding (pu) and the item embedding
(qj) from P and Q as follows.

pu = PT xu and qj = QT zj . (1)

In our proposed model, user embedding pu has two roles to play. First, it learns
the necessary user representations from user-item interactions. Second, it is used
in further blocks as a query vector which extracts user-specific information from
the HIN at both component- and view-levels.

https://github.com/mvijaikumar/GAMMA


GAMMA 31

Item-View Embedding Constructions via Graph Attention Mecha-
nism (GAT Layers). This block is responsible for constructing initial view-
wise embeddings for items from the HIN, each representing different views. To
do this, we first extract different sub-graphs involving items with different entity
types. For example, movies can be associated with both actors and genres. So,
in this case, we construct two item-view sub-graphs – one with movie and actor
nodes and the other with movie and genre nodes, as illustrated in Fig. 1.

Fig. 1. The illustration of GAMMA architecture for top-N heterogeneous recommen-
dation. Here, (a) provides overall architecture. The main components – (b) GAT layer,
(c) memory network are given separately for more clarity. (Best viewed in colour.)
(Color figure online)

Definition 2. Item-view sub-graph. Formally, we define item-view sub-graph
for each view (s) as Gs(Vs, Es) where Vs ⊆ V and Es ⊆ E. Here, I ∩ Vs �= φ,∀s.

Further, individually on these sub-graphs, we employ a multi-layer graph
attention mechanism (GAT [16]) to construct first-level view-wise embeddings
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for the items. Let W i
G and ci

G be the weight matrix and vector associated with
layer i and N (j) be a set of neighbors for the node j. The representations (f i

j for
item j at layer i) for the items involved in the sub-graphs are learned as follows.

f i
j =

∑
k∈N (j)

αi
(j,k)W

i
Gf i−1

k ,

where αi
(j,k) =

exp(a(ci
G · [W i

Gf i−1
j ‖W i

Gf i−1
k ]))∑

k′∈N (j) exp(a(ci
G · [W i

Gf i−1
j ‖W i

Gf i−1
k′ ]))

.

(2)

Here, ‖ denotes concatenation operation, f0
k = zk (one-hot item representation),

and αi
(j,k) denotes influence value for node k on node j at layer i. At each

GAT layer, we have multiple attention heads acting on the node representations.
Then, we concatenate the embeddings coming from different heads. For ease of
explanation, we represent the final embedding from GAT layers by hs

j – the
embedding associated with view s for item j.

Therefore, we obtain multiple embeddings for the items – one from each sub-
graph. These provide us different views {hs

j}S
s=1 for the item j where S denotes

the total number of views. We compactly represent the embeddings obtained for
all the nodes for single view as hs = [hs

1, h
s
2, ..., h

s
n].

Multi-view Multi-head Memory Attention Layer (M3-layer). M3-layer
takes embedding {hs}S

s=1 obtained from the previous GAT layers as input,
extracts attentively user specific components from each view s, individually. As
we discussed earlier, the user may prefer to watch movies acted by an academy
award-winning actor. Hence, keeping that into consideration, the goal of this
layer is to capture such information using multiple memory attention networks
followed by aggregating such information using the attention network. This is
done for each view separately.

During this process, we use multiple memory networks for each view to
capture the different notions of influential components. This can be intuitively
thought of as different filters acting on the different parts of the input. Further,
we utilize attention mechanisms to aggregate these constructed user-specific item
embeddings for each view, as illustrated in Fig. 1. We first explain what happens
in one view and one memory attention network. The same procedure is followed
in other views and different memory attention heads, respectively.

Let μ = {μ1, μ2, ..., μτ}, where μi ∈ R
d and κ = {κ1, κ2, ..., κτ}, where

κi ∈ R
d be memory components and the corresponding keys, respectively. Here,

τ denotes the total number of memory units. First, we get normalized user and
item-view representation (φ(u,j)) as,

φ(u,j) =
pu 	 hj

‖pu‖‖hj‖ , (3)
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where φ(u,j) ∈ R
d and 	 denotes Hadamard product. This is then combined

with the keys (κ) to provide the required influential (attention) values,

βt
(u,j) =

exp(φ(u,j) · κt)∑τ
t′=1 exp(φ(u,j) · κt′)

. (4)

These influence values provide the influence score of how much each component
contributes to the user’s interest. They are then used along with the memory
units that provide user-specific item views. This is done as follows. First, we
extract the required information (μ̄t

j) from item views using memory units and
then we obtain the item representation (h̄(u,j)) as,

h̄(u,j) =
τ∑

t=1

βt
(u,j)μ̄

t
j , where μ̄t

j = μt 	 hj . (5)

Here h̄(u,j) ∈ R
d denotes the user-specific item-view representation from a single

memory network. We get multiple such representations from multiple views and
multiple heads (indexed by γ) given as h̄

(s,γ)
(u,j). We then aggregate the represen-

tations view-wise (into πs
(u,j)) as follows,

πs
(u,j) = A({h̄

(s,γ)
(u,j)}Γ

γ=1, pu), (6)

where Γ denotes the total number of memory networks and A(·) denotes atten-
tion network [9]. This is defined as,

A(pu, {xγ}Γ
γ=1) =

Γ∑
γ=1

ζuγxuγ , where

ζuγ =
exp(score(pu, xγ))∑Γ

γ′=1 exp(score(xγ′ , pu))
and score(pu, xγ) = pT

u WAxγ .

(7)

Here, xγ is a vector, ζuγ denotes influence value of γ on user u and WA is weight
matrix associated with the attention network. Note that, memory units and keys
are initialized randomly and the weights are shared across the inputs.

View-Level Attention Layer. The previous layer provides the item embed-
dings ({πs

(u,j)}S
s=1) concerning different views, consisting of important user-

specific information extracted, components-wise. The purpose of this layer is
to aggregate the information present in item embeddings, view-wise. Different
users get influenced by different views of items, for example, the genre of the
movie or actors in the movie. Hence, we combine such different views attentively
as follows,

ϕ(u,j) = A(pu, {πs
(u,j)}S

s=1), (8)

where ϕ(u,j) is a resultant item-view representation extracted from HIN.
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Prediction Layer. This layer is responsible for gathering information com-
ing from the interaction matrix and HIN network and provides the predicted
probability that a user may interact with each item in the future. It first con-
catenates representations coming from the user-item interactions and the HIN.
We then pass these representations through a sequence of fully connected layers
and finally, we obtain the predictive probability as

ŷ(u,j) = g(ψ(u,j)),
where ψ(u,j) = (pu 	 qj)‖(pu 	 ϕ(u,j)).

(9)

Here g(x) = a(· · · a(W2a(W1x+ b1)+ b2) · · · ) denotes a fully connected network,
a(·) is an activation function and Wk and bk are weight matrices and bias vectors,
respectively.

2.2 Loss Function

Since our ratings are implicit (binary), one can use point-wise loss functions such
as cross-entropy [3,4] or pair-wise loss functions such as BPR-loss [11]. In this
work, we use cross-entropy loss function and the final optimization problem is,

min
W

L(W) = −
∑

(u,j)∈D
y(u,j) ln ŷ(u,j) + (1 − y(u,j)) ln(1 − ŷ(u,j)) + λ R(W),

(10)

where W consists of all the model parameters, R(·) is a regularizer and λ is a non-
negative hyperparameter. We employ negative sampling strategy during training.
Here, D = D+ ∪ D−

samp where D+ := {(u, j) ∈ Ω} and D−
samp ⊂ {(u, j′) �∈ Ω},

and D−
samp is obtained using a negative sampling procedure [10].

3 Experiments

3.1 Experimental Settings

Datasets. We use three real-world datasets – Amazon, Yelp and MovieLens –
for our experiments.1 Besides the user-item interactions, the datasets contain
HINs where items are involved. In particular, the HIN associated with the Ama-
zon dataset has a co-viewed network, brand and category information for the
products, the HIN associated with the Yelp dataset has category and city infor-
mation for the businesses and the HIN associated with MovieLens dataset has
actor, director, country and genre information for the movies, respectively. The
MovieLens dataset has ratings in the range [0.5–5] and the other datasets have
ratings in the range [1–5], respectively. We do the following pre-processing, as

1 https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-
Embedding.

https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding
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done in [3,4]. That is, (1) we retain the ratings more than 3 for the Amazon
and Yelp datasets and 3.5 for the MovieLens dataset, and treat them as posi-
tive interactions, and (2) we retain users and items having more than 10 ratings
for the Amazon and MovieLens datasets and more than 5 for the Yelp dataset,
respectively. The statistics of the datasets are given in Table 1.

Metrics and Evaluation Procedure. We adopt two top-N recommendation
metrics (ranking metrics) – hit ratio (HR@N) and normalized discounted cumu-
lative gain (NDCG@N) for the performance comparison. Further, following [3,4],
we split the dataset into train, validation and test sets where we hold-out one
randomly selected item for each user for validation and test set, respectively.
Since it is difficult to rank all the available items for each user during the eval-
uation, we sample 50 non-interacted items for each user to compare with the
hold-out item in the validation and test set. We repeat this procedure five times
and obtain five different splits. We report the mean and standard deviation of
these five splits as the final result.

Table 1. Dataset statistics

Dataset # Users # Items # Entities # Connections # Ratings

in HIN in HIN

Amazon 4365 2617 5625 10324 131167

MovieLens 1761 1036 4301 13661 112616

Yelp 4511 3862 4406 15556 96356

Comparison Models. We evaluate our proposed model with the following
models. Note that BPR, MF, GMF and NeuMF are rating-only models, and
linear and non-linear variants of HERec and NeuACF are HIN based models for
recommendation task.

– NeuACF [3] is a state-of-the-art model for top-N heterogeneous recommen-
dation setting. NeuACF is a two-stage approach. In the first stage, it com-
putes user-user and item-item similarity matrices offline using some manually
selected meta-paths. In the second stage, it utilizes these similarity matrices
along with the user-item rating matrix for prediction.

– HERec [12] is a recently proposed two-stage approach for heterogeneous rec-
ommendation setting. In the first stage, it computes user and item embeddings
offline using a meta-path based random walk and skip-gram technique [10].
In the second stage, it leverages embeddings learned for users and items for
the recommendation tasks. We include the two proposed variants of HERec
– HERec (linear) and HERec (non-linear) for comparison.

– NeuMF [4] is one of the state-of-the-art models for rating-only top-N rec-
ommendation setting. NeuMF is a fusion between MF and a neural network
approach. Further, GMF is proposed as a part of NeuMF.
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– MF [6] is a standard and well-known baseline for the recommendation task.
– BPR [11] is a standard baseline for the top-N recommendation setting.

FMG [22] is another recently proposed model that utilizes commuting matri-
ces learned from meta-graph based strategy. Since it has been shown in [3] that
NeuACF outperforms FMG, we omit this from the comparison.

Hyperparameter Setting and Reproducibility. We implement our model
using Python and TensorFlow 1.14. We tune the hyperparameters using the val-
idation set and report the corresponding test set performance. From the valida-
tion set performance, we set the embedding dimension (d) to 32 for the Amazon
and Yelp datasets, and 64 for the MovieLens dataset. We set the learning rate
to 0.002, the number of negative samples to 3, the mini-batch size to 2048 with
Xavier initialization, use an RMSprop optimizer, and a dropout of 0.5. We use
a 2-layer GAT network with 6 and 4 attention heads in the first and second
layers, respectively. Further, we set the number of heads (Γ ) in M3-layer to 4,
and the number of memory units (T ) to 8, respectively. We tune and set the
hyperparameters for the baselines according to the respective papers.

Table 2. Overall performance of different models on three real-world datasets –
Amazon, MovieLens and Yelp (given in HR@5).

Model Amazon MovieLens Yelp

MF [6] 0.4976 ± 0.0056 0.6579 ± 0.0045 0.5109 ± 0.0102

BPR [11] 0.5079 ± 0.0071 0.6516 ± 0.0046 0.5107 ± 0.0064

GMF [4] 0.5235 ± 0.0049 0.6757 ± 0.0078 0.5307 ± 0.0079

NeuMF [4] 0.5366 ± 0.0063 0.7025 ± 0.0056 0.5396 ± 0.0060

HERec (linear) [12] 0.5359 ± 0.0079 0.6927 ± 0.0040 0.5279 ± 0.0040

HERec (non-linear) [12] 0.5280 ± 0.0066 0.6947 ± 0.0072 0.5306 ± 0.0070

NeuACF [3] 0.5520 ± 0.0042 0.7054 ± 0.0108 0.5678 ± 0.0124

GAMMA (ours) 0.5593 ± 0.0060 0.7171 ± 0.0117 0.5579 ± 0.0067

Table 3. Overall performance of different models on three real-world datasets –
Amazon, MovieLens and Yelp (given in NDCG@5).

Model Amazon MovieLens Yelp

MF [6] 0.3467 ± 0.0052 0.4717 ± 0.0039 0.3568 ± 0.0073

BPR [11] 0.3585 ± 0.0022 0.4765 ± 0.0033 0.3565 ± 0.0035

GMF [4] 0.3664 ± 0.0040 0.5062 ± 0.0062 0.3768 ± 0.0056

NeuMF [4] 0.3782 ± 0.0057 0.5233 ± 0.0031 0.3808 ± 0.0028

HERec (linear) [12] 0.3816 ± 0.0071 0.5081 ± 0.0051 0.3741 ± 0.0013

HERec (non-linear) [12] 0.3760 ± 0.0054 0.5116 ± 0.0057 0.3764 ± 0.0049

NeuACF [3] 0.3992 ± 0.0041 0.5350 ± 0.0061 0.4061 ± 0.0089

GAMMA (ours) 0.4049 ± 0.0028 0.5461 ± 0.0056 0.3979 ± 0.0052
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3.2 Experimental Results and Discussion

Overall Performance. We present the overall performance of our model –
GAMMA in Table 2 and Table 3. Here, we conduct paired t-test and the improve-
ments obtained here are statistically significant with p < 0.01. Note that HERec
and NeuACF heavily utilize the embeddings constructed offline, while GAMMA
does not use any such offline embeddings. As we can see from Table 2 and Table 3,
our model outperforms the HIN based recommendation models as well as the
rating-only models on the Amazon and the MovieLens datasets and performs
comparably with NeuACF on the Yelp dataset. From this, we conclude that the
GAT mechanism along with user-specific knowledge extraction from the HIN
can effectively replace the tedious offline embedding construction strategies.

Performance Against Different Sparsity Levels. Here, we experiment to
study the performance of the models for different sparsity levels. For this, we take

Fig. 2. Performance comparison of different models against different sparsity levels on
the datasets: Amazon, MovieLens and Yelp. Here, the mean values obtained from the
five different splits for each sparsity level are reported.

Fig. 3. (a) Objective function value, performance of GAMMA on validation set (in
HR@5 and NDCG@5) against number of training epochs. (b) Performance comparison
when HIN is ignored vs HIN is used. (c) Distribution of attention scores learned by
GAMMA for different views on the Amazon dataset. Here, red-colored line inside the
box signifies the median. (d) Performance comparison when M3-layer is not included
vs M3-layer is included. (Best viewed in color.) (Color figure online)
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the full training set, and at each level, we remove 20% of the interactions. This
is illustrated in Fig. 2. Here, the x-axis denotes the percentage of the training
data used, and the y-axis denotes the performance in HR@5 or NDCG@5. From
this study, we observe that despite the varying sparsity levels, the performance
of our model is consistent across different datasets.

Figure 3(a) shows the objective function value and the validation set perfor-
mance (in HR@5 and NDCG@5) against the number of training epochs. Further,
Fig. 3(b) illustrates the performance comparison of GAMMA when the HIN is
ignored vs the HIN is included. The performance improvement shows that our
proposed approach effectively utilizes the HIN to improve the top-N recommen-
dations. Figure 3(c) demonstrates the attention score distribution for different
views on the Amazon dataset. This indicates that the influence of different views
on the recommendation tasks varies, and attentively selecting information com-
ing from different views is essential. Further, Fig. 3(d) illustrates the performance
of GAMMA when the M3-layer is not included vs the M3-layer is included. From
this, we observe that incorporating the M3-layer indeed helps in improving the
performance.

4 Related Work

Early CF techniques are mainly based on matrix factorization models – BPR [11]
and MF [6] – and their extensions [7]. In recent years, due to their rich representa-
tion capabilities, several neural networks and deep learning models are developed
for top-N recommendation settings [21]. For instance, NeuMF [4] combines MF
with a multi-layer perceptron to learn better representations for users and items
through MF as well as neural networks. Further, autoencoders and variational
autoencoders [8] and graph neural network-based models [19] have also been
proposed for recommendation systems. Nevertheless, since most of these models
entirely rely on past interactions between users and items, their performance is
mostly affected when sparsity increases. Recently, to mitigate the sparsity issues,
there is an increasing interest in leveraging knowledge from the HIN. Our work
falls under this category.

Early work on heterogeneous recommendation incorporate knowledge
extracted from the HIN to MF models. For instance, HeteRec [20] uses meta-
path based similarity construction followed by the Bayesian ranking optimiza-
tion technique for the top-N recommendation. Besides, SemRec [13] employs
weighted meta-paths to prioritize and personalize user preferences on different
paths. Recently, due to its ability to effectively extract relevant information,
employing attention mechanism [9,18] to recommendation systems is gaining
ground [2,15]. Further, the memory attention network has been employed in the
context of top-N social [1] and multi-media [2] recommendation tasks. In terms of
utilizing multiple views (aspects) for the items from the HIN, our work is related
to NeuACF [3], MCRec [5], HERec [12], KGAT [17] and FMG [22]. For instance,
NeuACF [3] follows a two-stage approach – in the first stage, it constructs similar-
ity matrices. In the second stage, these similarity matrices are used for learning
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deeper representations of the users and items. KGAT [17] incorporates infor-
mation from the knowledge graph using graph neural networks. Further, Hu
et al. [5] proposes a three-way neural interaction model with co-attention for
the top-N heterogeneous recommendation. In place of meta-paths, FMG [22]
proposes meta-graphs for extracting knowledge from HIN. Further, Shi et al.
[12] propose HERec that fuses meta-path based embeddings into extended MF
model.

5 Conclusion

In this work, we proposed a graph and memory attention-based neural network
model – GAMMA for top-N recommendation systems. The proposed technique
replaces the tedious process of computing similarity or commuting matrix offline
with a graph attention mechanism. This makes the whole procedure end-to-
end. Further, we proposed a multi-view multi-head memory attention layer to
extract fine-grained user-specific information using a memory attention network.
The proposed model is general, and it can easily be extended to scenarios where
both users and items are involved in the HIN. Extensive experiments on three
real-world datasets demonstrated the effectiveness of our model over state-of-
the-art top-N recommendation models.
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