Skip to main content

Transfer Learning Approach in Classification of BCI Motor Imagery Signal

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2020)

Abstract

The paper presents application of a transfer learning-based, deep neural network classification model to the brain-computer interface EEG data. The model was initially trained on the publicly available dataset of motor imagery EEG data gathered from BCI experienced users. The final fitting was performed on the set of six participants for whom it was the first contact with a BCI system. The results show that initial training affects classification accuracy positively even in case of inexperienced participants. In the presented preliminary study five participants were examined. Data from each participant were analysed separately. Results show that the transfer learning approach allows to improve classification accuracy by even more than 10% points in comparison to the baseline deep neural network models, trained without transfer learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J.R., Wolpaw, E.W.: Brain–computer interfaces: something new under the sun. In: Wolpaw, J.R., Wolpaw, E.W. (eds.) Brain–Computer Interfaces, Principles and Practice, pp. 3–12. Oxford University Press Inc., New York (2012)

    Chapter  Google Scholar 

  2. Clerc, M., Bougrain, L., Lotte, F.: Brain-Computer Interfaces 1: Foundations and Methods. Wiley, New York (2016)

    Book  Google Scholar 

  3. Wolpaw, J.R.: Brain–computer interfaces. Handbook of Clinical Neurology 110, 67–74 (2013)

    Article  Google Scholar 

  4. Lotte, F., et al.: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  5. Arvaneh, M., Tanaka, T.: Brain–computer interfaces and electroencephalogram: basics and practical issues. In: Arvaneh, M., Tanaka, T. (eds.) Signal Processing and Machine Learning for Brain-Machine Interfaces, pp. 1–21. The Institution of Engineering and Technology, London (2018)

    MATH  Google Scholar 

  6. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8, 441–446 (2000)

    Article  Google Scholar 

  7. Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., Kreutz-Delgado, K.: Evolving signal processing for brain–computer interfaces. Proc. IEEE 100, 1567–1584 (2012)

    Article  Google Scholar 

  8. Krusienski, D.J., McFarland, D.J., Principe, J.C.: BCI signal processing: Feature extraction. In: Wolpaw, J.R., Wolpaw, E.W. (eds.) Brain–Computer Interfaces, Principles and Practice, pp. 3–12. Oxford University Press Inc., New York (2012)

    Google Scholar 

  9. Cecotti, H.: Feedforward artificial neural networks for event-related potential detection. In: Arvaneh, M., Tanaka, T. (eds.) Signal Processing and Machine Learning for Brain-Machine Interfaces, pp. 173–192. The Institution of Engineering and Technology, London (2018)

    Google Scholar 

  10. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition Neural Comput. 1, 541–551 (1989)

    Google Scholar 

  11. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain–computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 433–445 (2011)

    Article  Google Scholar 

  12. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  13. Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14, 016003 (2016)

    Article  Google Scholar 

  14. Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)

    Article  Google Scholar 

  15. Lu, N., Li, T., Ren, X., Miao, H.: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines IEEE. Trans. Neural Syst. Rehabil. Eng. 25, 566–576 (2017)

    Article  Google Scholar 

  16. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58, 355–362 (2011)

    Article  Google Scholar 

  17. Kang, H., Nam, Y., Choi, S.: Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process. Lett. 16, 683–686 (2009)

    Article  Google Scholar 

  18. Morioka, H., et al.: Learning a common dictionary for subject-transfer decoding with resting calibration. NeuroImage 111, 167–178 (2015)

    Article  Google Scholar 

  19. Fazli, S., Popescu, F., Danóczy, M., Blankertz, B., Müller, K.R., Grozea, C.: Subject-independent mental state classification in single trials. Neural Netw. 22, 1305–1312 (2009)

    Article  Google Scholar 

  20. Cho, H., Ahn, M., Kim, K., Jun, C.S.: Increasing session-to-session transfer in a brain–computer interface with on-site background noise acquisition. J. Neural Eng. 12, 066009 (2015)

    Article  Google Scholar 

  21. Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., Grosse-Wentrup, M.: Transfer learning in brain-computer interfaces. IEEE Comput. Intell. Mag. 11, 20–31 (2016)

    Article  Google Scholar 

  22. Kang, H., Choi, S.: Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw. 57, 39–50 (2014)

    Article  Google Scholar 

  23. Azab, A., Toth, J., Mihaylova, L.S., Arvaneh, M.: A review on transfer learning approaches in brain–computer interface. In: Arvaneh, M., Tanaka, T. (eds.) Signal Processing and Machine Learning for Brain-Machine Interfaces, pp. 173–192. The Institution of Engineering and Technology, London (2018)

    Google Scholar 

  24. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Article  Google Scholar 

  25. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Plechawska-Wójcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Begiełło, F., Tokovarov, M., Plechawska-Wójcik, M. (2020). Transfer Learning Approach in Classification of BCI Motor Imagery Signal. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science(), vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47679-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47678-6

  • Online ISBN: 978-3-030-47679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics